Conjunctive Query Containment under Constraints and Access Limitations: Two Chase Techniques

Andrea Calì

Dept. of Information Systems and Computing, Brunel University, UK
Oxford-Man Institute of Quantitative Finance, University of Oxford, UK

Politecnico di Bari
30th August 2010
What is query containment?

Definition

Given two queries \(q_1 \) and \(q_2 \) we say \(q_1 \) is contained in \(q_2 \), denoted \(q_1 \subseteq q_2 \), if for every database \(D \) we have

\[
q_1(D) \subseteq q_2(D)
\]

\(q(D) \): result of evaluation of \(q \) over \(D \)
Introduction

Query containment

- Fundamental issue in query optimisation
- We consider *conjunctive queries* over schemata *schemata with constraints*
- The presence of constraints makes query containment checking difficult
- Need for reasoning on *constraints* imposed by the database schema
- q_1 contained in q_2 under Σ, denoted $q_1 \subseteq_\Sigma q_2$, if for every database D that satisfies Σ we have $q_1(D) \subseteq q_2(D)$
Conjunctive query containment: algorithm

1. freeze body(q_1) and head(q_1) by turning each variable into a distinct (fresh) constant
2. evaluate q_2 over the frozen body of q_1
3. $q_1 \subseteq q_2$ iff the evaluation returns the frozen head of q_1

Testing containment amounts to checking the existence of a query homomorphism from q_2 to q_1 [Chandra & Merlin 1977].
Example

From [Ullman 1997]

\[q_1 : \quad p(X, Z) \leftarrow a(X, Y), a(Y, Z) \]
\[q_2 : \quad p(X, Z) \leftarrow a(X, U), a(V, Z) \]
Example

From [Ullman 1997]

\[q_1 : \ p(X, Z) \leftarrow a(X, Y), a(Y, Z) \]
\[q_2 : \ p(X, Z) \leftarrow a(X, U), a(V, Z) \]

Frozen body\((q_1) \):

\[a(0, 1) \leftarrow \]
\[a(1, 2) \leftarrow \]
Example

From [Ullman 1997]

\[q_1 : \ p(X, Z) \leftarrow a(X, Y), a(Y, Z) \]
\[q_2 : \ p(X, Z) \leftarrow a(X, U), a(V, Z) \]

Frozen body\((q_1) \):

\[a(0, 1) \leftarrow \]
\[a(1, 2) \leftarrow \]

Frozen head\((q_1) \): \[p(0, 2) \leftarrow \]
Example (contd.)

Applying q_2 to the frozen body(q_1), we find a substitution:

$$X \rightarrow 0, \ U \rightarrow 1, \ V \rightarrow 1, \ Z \rightarrow 2$$

that yields $p(0, 2)$ which is the frozen head of q_1.
Example (contd.)

Applying q_2 to the frozen body(q_1), we find a substitution:

\[X \rightarrow 0, \quad U \rightarrow 1, \quad V \rightarrow 1, \quad Z \rightarrow 2 \]

that yields $p(0, 2)$ which is the frozen head of q_1. Therefore $q_1 \subseteq q_2$.
Example (contd.)

Applying q_2 to the frozen body(q_1), we find a substitution:

$$X \rightarrow 0, \ U \rightarrow 1, \ V \rightarrow 1, \ Z \rightarrow 2$$

that yields $p(0, 2)$ which is the frozen head of q_1.

Therefore $q_1 \subseteq q_2$.

Note

The frozen body of q_1 is a representative of (a piece of) all databases that provide an answer to q_1.
Outline

1. Introduction
2. Query containment under database constraints
3. QC with the chase
4. The Deep Web
5. Query Containment – recall
6. The Crayfish-Chase
7. Complexity of QC under access limitations
8. Conclusions
Query containment under constraints

Definition

Given a set Σ of database dependencies, we say q_1 is contained in q_2 under Σ, denoted $q_1 \subseteq_\Sigma q_2$, if for every database D such that $D \models \Sigma$ we have

$$q_1(D) \subseteq q_2(D)$$
Our setting

Queries

- conjunctive queries (CQs)

Dependencies

1. key dependencies (KDs)
 \[\text{key}(r) = \{A_1, \ldots, A_k\} \]
2. inclusion dependencies (IDs) (generalisation of foreign key dependencies)
 \[r_1[A_1, \ldots, A_m] \subseteq r_2[B_1, \ldots, B_m] \]
QC under constraints: example

Schema

employee(Emp_id, Salary, Dept)
department(Dept, Location)

QC under constraints: example

Schema

employee(\textit{Emp_id}, \textit{Salary}, \textit{Dept})
department(\textit{Dept}, \textit{Location})

with constraint employee[3] \subseteq department[1].

Queries

\begin{align*}
q_1 : & \quad p(X) \leftarrow \text{employee}(X, Y, Z), \text{department}(Z, W) \\
q_2 : & \quad p(X) \leftarrow \text{employee}(X, Y, Z)
\end{align*}
QC under constraints: example

Schema

employee(Emp_id, Salary, Dept)
department(Dept, Location)

Queries

\[q_1 : p(X) \leftarrow \text{employee}(X, Y, Z), \text{department}(Z, W) \]
\[q_2 : p(X) \leftarrow \text{employee}(X, Y, Z) \]

\(q_1 \subseteq q_2 \) and \(q_2 \not\subseteq q_1 \), but notice that \(q_2 \subseteq_{\Sigma} q_1 \) (queries are equivalent under \(\Sigma \)).
Query containment under database constraints

Checking QC under database dependencies

Intuition

- Once we freeze \(q_1 \) we are constructing a generic database that provides an answer to \(q_1 \)
- When we freeze, we must construct a database that satisfies \(\Sigma \)
- We do that by constructing the chase of the frozen query
Chasing...

“My heart’s in the Highlands, my heart is not here, My heart’s in the Highlands a-chasing the deer. A-chasing the wild deer, and following the roe; My heart’s in the Highlands, wherever I go.”
Chasing...

“My heart’s in the Highlands, my heart is not here, My heart’s in the Highlands a-chasing the deer. A-chasing the wild deer, and following the roe; My heart’s in the Highlands, wherever I go.”

Robert Burns
Chasing...

“My heart’s in the Highlands, my heart is not here, My heart’s in the Highlands a-chasing the deer. A-chasing the wild deer, and following the roe; My heart’s in the Highlands, wherever I go.”

Robert Burns

For much worse Scottish poetry, see William McGonagall (acclaimed as the worst British poet ever)
The chase “repairs” the frozen body of q_1 in two ways:

1. “collapsing” pairs of facts that violate a KD (KD chase rule)
2. adding facts when an ID is violated (ID chase rule)
Containment test under dependencies

Theorem [Johnson & Klug 1982]

$q_2 \subseteq_\Sigma q_1$ iff there is a homomorphism that maps body(q_2) on the chase of the frozen body(q_1), and the head of q_2 to the frozen head of q_1.

Note

The chase is a representative for all databases that satisfy Σ and provide an answer for q_1.
Infinite chase: example

Relations $r/2$, $s/2$

Dependencies

\[
\begin{align*}
\sigma_1 : & \quad r[1] \subseteq s[1] \\
\sigma_2 : & \quad s[2] \subseteq r[1] \\
\sigma_3 : & \quad s[2] \subseteq s[1] \\
\gamma_1 : & \quad \text{key}(r) = \{1\}
\end{align*}
\]
Infinite chase: example

Relations $r/2, s/2$

Dependencies

- $\sigma_1 : r[1] \subseteq s[1]$
- $\sigma_2 : s[2] \subseteq r[1]$
- $\sigma_3 : s[2] \subseteq s[1]$
- $\gamma_1 : \text{key}(r)=\{1\}$

Initial database (frozen body)

- $r(a, \alpha_0) \leftarrow$
- $r(a, b) \leftarrow$

Greek letters denote (frozen) non-distinguished variables (NDVs)
Infinite chase: example (contd.)

KD chase rule

We collapse the first two facts (due to \(\gamma_1 \)) by forcing \(\alpha_0 = b \).
Infinite chase: example (contd.)

KD chase rule

We collapse the first two facts (due to γ_1) by forcing $\alpha_0 = b$.

ID chase rule

Added facts due to IDs:

\[
\begin{align*}
 s(a, \alpha_1) & \leftarrow \\
 r(\alpha_1, \alpha_2) & \leftarrow \\
 s(\alpha_1, \alpha_3) & \leftarrow \\
 s(\alpha_1, \alpha_4) & \leftarrow \\
 r(\alpha_3, \alpha_5) & \leftarrow \\
 s(\alpha_3, \alpha_6) & \leftarrow \\
 \ldots
\end{align*}
\]

(... ad infinitum!)
Chase graph

- Facts in the frozen body of q_1 have level 0. A fact derived from the ID chase rule from another fact that is at level k has level $k + 1$.
- If fact f_2 is derived from fact f_1 by an ID σ, there is an arc (f_1, f_2) labelled with σ.
Example: chase graph

Diagram:

```
       R(a, b)
      /    \    
  σ₁    σ₁  σ₂  σ₃
 /      /    /    
S(a, α₁) S(a, α₁) S(α₁, α₃)
/    \\    /    \
R(α₁, α₂) S(α₁, α₄) R(α₃, α₅)
/    \\    /
S(α₁, α₄) S(α₁, α₃) S(α₃, α₆)
```

Conjunctive Query Containment under Constraints and Access Limitations: Two Chase Techniques
Undecidability of QC under KDs and IDs

Known result

QC under general functional dep. and IDs is undecidable [Chandra & Vardi 1982]
Undecidability of QC under KDs and IDs

Known result

QC under general functional dep. and IDs is undecidable [Chandra & Vardi 1982]

Theorem

QC under general KDs and IDs is undecidable

Proof sketch: Reduction from implication of KDs and IDs. Consider \(r/n, s/m \), a set of dep. \(\Sigma \) and a constraint

\[
\sigma: r[1, \ldots, k] \subseteq s[1, \ldots, k].
\]

\[
q_1: q() \leftarrow r(X_1, \ldots, X_k, \ldots, X_n)
\]

\[
q_2: q() \leftarrow r(X_1, \ldots, X_k, \ldots, X_n),
\]

\[
s(X_1, \ldots, X_k, Y_1, \ldots, Y_{m-k})
\]

it is easy to see that \(q_1 \subseteq \Sigma q_2 \) iff \(\Sigma \models \sigma \).
Theorem [Johnson & Klug JCSS 1984]

Containment is decidable in PSPACE.

Proof sketch:

- only a finite portion of the chase is necessary
- notion of **equivalent conjuncts** (agree on non-fresh constants)
- given a fact, an equivalent conjunct is found within \(\delta = |\Sigma| \cdot (W + 1)^W \), \(W \) maximum “width” of IDs in \(\Sigma \)
- Taking into account joins in \(q_2 \): the necessary depth is \(|q_2| \cdot \delta \)
- A nontrivial guess shows memberships in PSPACE
- PSPACE-hardness is also proved (like undecidability)
QC under KDs and IDs: decidable cases

- key-based IDs [Johnson & Klug 1984]; limited class, but is more general than foreign keys
- non-key-conflicting IDs [Calì & al. PODS 2003]; more general class than key-based IDs
Non-key-conflicting IDs

Definition

Non-key-conflicting IDs (NKCIDs) are of the form

\[r_1[A_1] \subseteq r_2[A_2] \]

where either:

1. no KD is defined over \(r_2 \)
2. \(A_2 \) is **not** a strict superset of \(\text{key}(r_2) \)
Separation Theorem

Theorem

Given q_1, q_2, Σ (NKCIDs), with

$$\Sigma = \Sigma_K \cup \Sigma_I$$

(KDs and IDs)

if the chase w.r.t. Σ does not fail in the first applications of the FD chase rule:

$$q_1 \subseteq_{\Sigma} q_2 \text{ iff } q_1 \subseteq_{\Sigma_I} q_2$$

Proof

Based on the fact that if KDs are not violated in the first step of the chase, they are never violated
Summary of complexity results

<table>
<thead>
<tr>
<th>KDs</th>
<th>IDs</th>
<th>complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>GEN</td>
<td>PSPACE</td>
</tr>
<tr>
<td>yes</td>
<td>no</td>
<td>NP</td>
</tr>
<tr>
<td>yes</td>
<td>FK</td>
<td>PSPACE</td>
</tr>
<tr>
<td>yes</td>
<td>NKC</td>
<td>PSPACE</td>
</tr>
<tr>
<td>yes</td>
<td>1KC</td>
<td>undecidable</td>
</tr>
<tr>
<td>yes</td>
<td>GEN</td>
<td>undecidable</td>
</tr>
</tbody>
</table>
The Deep Web

Data behind forms

- data accessible through Web forms
 - phone directories
 - auctions
 - stores
- heterogeneous sources can be integrated in a Web information system
Modelling access limitations

Example: white pages

- No possibility of asking for all entries (filling in no fields)
- At least one field must be filled in
- The result is a table
Modelling access limitations

Example: white pages

- No possibility of asking for *all* entries (filling in no fields)
- At least one field *must* be filled in
- The result is a table

Modelling

- We model each source as a table
- Filling in a field in the form corresponds to querying with a **selection** only
Example: whitepages.com – query
Example: whitepages.com – query

```
SELECT *
FROM whitepages
WHERE firstname='joseph'
    AND lastname='noto'
    AND stateprov='NJ'
```
Example: whitepages.com – results

Joseph A Noto
- 60 Inman Ave
- Colonia, NJ 07067-1802
- (732) 381-7723
- Age: 45-49
- Household: Jennie, Pamela
- Listing Details

Joseph C Noto Jr
- 81 E Grove St
- Bogota, NJ 07603-1107
- (201) 488-6593
- Age: 55-59
- Listing Details

Joseph C Noto
- 135 E McClellan Ave, Apt 13
- Livingston, NJ 07039-1346
- Phone number unavailable
- Listing Details
We consider conjunctive queries in a relational setting.

We model each data source requiring a certain selection on attributes as a relation.
Modelling query answering

Modelling

- We consider **conjunction queries** in a **relational setting**
- We model each data source requiring a certain selection on attributes as a **relation**

Observations

- Limitations restrict the answers we can retrieve
- We are interested in **maximal** answers (w.r.t. set inclusion)
Outline

1. Introduction
2. Query containment under database constraints
3. QC with the chase
4. The Deep Web
5. Query Containment – recall
6. The Crayfish-Chase
7. Complexity of QC under access limitations
8. Conclusions
Example

Superscripts denote input and output attributes

Schema: concerts and artists

\[r_1^{oi1}(Title, City, Artist) \]
\[r_2^{io1}(Artist, Nation, City) \]
Example

Superscripts denote input and output attributes

Schema: concerts and artists

\[r_1^{oi}(Title, City, Artist) \]
\[r_2^{io}(Artist, Nation, City) \]

Query

\[q(A) \leftarrow r_2(A, italy, modena) \]
Example

Superscripts denote input and output attributes

Schema: concerts and artists

\[r_1^{oi}(Title, City, Artist) \]
\[r_2^{ioo}(Artist, Nation, City) \]

Query

\[q(A) \leftarrow r_2(A, italy, modena) \]

Best answering: \(q \) cannot be executed directly!

- Starting from the constant \(modena \), we can access \(r_1 \)
- then we can obtain tuples with new \(Artist \) constants
- with such values we can access \(r_2 \) and start over
- We consider abstract domains \((Year, Artist\ etc.)\)
 - We assume never to enumerate domain values
Example (cont’d)

<table>
<thead>
<tr>
<th>Relation r_1</th>
<th>Relation r_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>azzurro</td>
<td>modena</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Answer tuples
Example (cont’d)

<table>
<thead>
<tr>
<th>Relation r_1</th>
<th>Relation r_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>azzurro</td>
<td>modena</td>
</tr>
<tr>
<td>Conte</td>
<td>Italy</td>
</tr>
</tbody>
</table>

Answer tuples
Example (cont’d)

<table>
<thead>
<tr>
<th>Relation r_1</th>
<th>Relation r_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>azzurro</td>
<td>modena</td>
</tr>
<tr>
<td>volare</td>
<td>genoa</td>
</tr>
<tr>
<td>K551</td>
<td>genoa</td>
</tr>
</tbody>
</table>

Answer tuples
Example (cont’d)

<table>
<thead>
<tr>
<th>Relation r_1</th>
<th>Relation r_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>azzurro</td>
<td>conte</td>
</tr>
<tr>
<td>modena</td>
<td>italy</td>
</tr>
<tr>
<td>conte</td>
<td>genoa</td>
</tr>
<tr>
<td>volare</td>
<td>russia</td>
</tr>
<tr>
<td>genoa</td>
<td>moscow</td>
</tr>
<tr>
<td>K551</td>
<td>kissin</td>
</tr>
<tr>
<td>genoa</td>
<td>italy</td>
</tr>
<tr>
<td>kissin</td>
<td>polignano</td>
</tr>
</tbody>
</table>

Answer tuples
Example (cont’d)

<table>
<thead>
<tr>
<th>Relation r_1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>azzurro</td>
<td>modena</td>
<td>conte</td>
</tr>
<tr>
<td>volare</td>
<td>genoa</td>
<td>modugno</td>
</tr>
<tr>
<td>K551</td>
<td>genoa</td>
<td>kissin</td>
</tr>
<tr>
<td>sole_mio</td>
<td>moscow</td>
<td>pavarotti</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relation r_2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>conte</td>
<td>italy</td>
<td>genoa</td>
<td></td>
</tr>
<tr>
<td>kissin</td>
<td>russia</td>
<td>moscow</td>
<td></td>
</tr>
<tr>
<td>modugno</td>
<td>italy</td>
<td>polignano</td>
<td></td>
</tr>
</tbody>
</table>
Example (cont’d)

Relation r_1

<table>
<thead>
<tr>
<th>azzurro</th>
<th>modena</th>
<th>conte</th>
</tr>
</thead>
<tbody>
<tr>
<td>volare</td>
<td>genoa</td>
<td>modugno</td>
</tr>
<tr>
<td>K551</td>
<td>genoa</td>
<td>kissin</td>
</tr>
<tr>
<td>sole_mio</td>
<td>moscow</td>
<td>pavarotti</td>
</tr>
</tbody>
</table>

Relation r_2

<table>
<thead>
<tr>
<th>conte</th>
<th>italy</th>
<th>genoa</th>
</tr>
</thead>
<tbody>
<tr>
<td>kissin</td>
<td>russia</td>
<td>moscow</td>
</tr>
<tr>
<td>modugno</td>
<td>italy</td>
<td>polignano</td>
</tr>
<tr>
<td>pavarotti</td>
<td>italy</td>
<td>modena</td>
</tr>
</tbody>
</table>

Answer tuples
Example (cont’d)

<table>
<thead>
<tr>
<th>Relation r_1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$azzurro$</td>
<td>$modena$</td>
<td>$conte$</td>
</tr>
<tr>
<td>$volare$</td>
<td>$genoa$</td>
<td>$modugno$</td>
</tr>
<tr>
<td>$K551$</td>
<td>$genoa$</td>
<td>$kissin$</td>
</tr>
<tr>
<td>$sole_mio$</td>
<td>$moscow$</td>
<td>$pavarotti$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relation r_2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$conte$</td>
<td>$italy$</td>
<td>$genoa$</td>
<td></td>
</tr>
<tr>
<td>$kissin$</td>
<td>$russia$</td>
<td>$moscow$</td>
<td></td>
</tr>
<tr>
<td>$modugno$</td>
<td>$italy$</td>
<td>$polignano$</td>
<td></td>
</tr>
<tr>
<td>$pavarotti$</td>
<td>$italy$</td>
<td>$modena$</td>
<td></td>
</tr>
</tbody>
</table>

Answer tuples

$\langle pavarotti \rangle$
Providing maximal answers

- Basic technique in [Millstein et al. 2000]
- Answering is inherently recursive
- Need for a set of initial constants (usually those in the query)
- Encoding in positive Datalog
Naive program for previous example

\begin{align*}
\rho_1 : & \quad q(A) \leftarrow \hat{r}_2(A, \text{italian, modena}) \\
\rho_2 : & \quad \hat{r}_1(T, C, A) \leftarrow r_1(T, C, A), \text{dom}_C(C) \\
\rho_3 : & \quad \hat{r}_2(A, N, C) \leftarrow r_2(A, N, C), \text{dom}_A(A) \\
\rho_4 : & \quad \text{dom}_T(T) \leftarrow \hat{r}_1(T, C, A) \\
\rho_5 : & \quad \text{dom}_C(C) \leftarrow \hat{r}_1(T, C, A) \\
\rho_6 : & \quad \text{dom}_A(A) \leftarrow \hat{r}_1(T, C, A) \\
\rho_7 : & \quad \text{dom}_A(A) \leftarrow \hat{r}_2(A, N, C) \\
\rho_8 : & \quad \text{dom}_N(N) \leftarrow \hat{r}_2(A, N, C) \\
\rho_9 : & \quad \text{dom}_C(C) \leftarrow \hat{r}_2(A, N, C) \\
\rho_{10} : & \quad \text{dom}_N(\text{italian}) \\
\rho_{11} : & \quad \text{dom}_C(\text{modena})
\end{align*}
The containment problem

Notation

- Conjunctive queries q_1, q_2
- Relational schema S with limitations Λ
- Initial constants $I \supseteq \text{const}(q_1) \cup \text{const}(q_2)$
- $\text{ans}(q, S, D, I)$: maximal answer to q evaluated on a schema S under limitations Λ using initial constants I on database D.
The containment problem

Notation

- Conjunctive queries q_1, q_2
- Relational schema S with limitations Λ
- Initial constants $I \supseteq \text{const}(q_1) \cup \text{const}(q_2)$
- $\text{ans}(q, S, D, I)$: maximal answer to q evaluated on a schema S under limitations Λ using initial constants I on database D.

Containment

Containment $q_1 \subseteq_{\Lambda,I} q_2$ under limitations holds if for every database D for S we have

$$\text{ans}(q_1, S, D, I) \subseteq \text{ans}(q_2, S, D, I)$$
The containment problem (cont’d)

Containment is useful for:

- query minimisation
- optimisation of query execution
The containment problem (cont’d)

Containment is useful for:

- query minimisation
- optimisation of query execution

- Checking containment amounts to checking containment between two Datalog programs

 * answering is inherently recursive

 * ...due to cyclic reuse of constants according to their abstract domains

- Datalog query containment is undecidable; however, programs have a special form
The chase – recall

Used for:
- implication of relational dependencies
- query containment [Johnson & Klug 1984]
- querying incomplete data
- data integration and data exchange

We have a different version...
The crayfish-chase
The Crayfish-Chase
The crayfish-chase

Features

- Constructed starting from a query q and a set of initial constants
- It is a set of databases, denoted $\text{cchase}(q, S, I)$
- Every database represents one way of “extracting” an answer tuple
- Thus, the chase serves as a tool for containment
The crayfish-chase: example

Schema

<table>
<thead>
<tr>
<th>$r_1^{io}(A, B, A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_2^{io}(A, B)$</td>
</tr>
<tr>
<td>$r_3^{o}(A)$</td>
</tr>
</tbody>
</table>

Query

$q(X_2) \leftarrow r_1(a, X_1, X_2)$

- **W.l.o.g.**, we use constant-free queries
- First the query is **frozen**, then “expanded” by chasing
 - Special constants ζ_i denote unknown values (labelled nulls)
- Chase seen as a **forest**, layered in **levels**
The crayfish-chase: example (cont’d)

Query with constants eliminated

\[q(X_2) \leftarrow r_1(X_a, X_1, X_2), \ell_a(X_a) \]

- \(\ell_a \) is an aux. predicate with extension \(\{\langle a\rangle\} \)
- the chase starts from the frozen body

Frozen head

\[q(\zeta_2) \]

Frozen body

\[r_1(\zeta_0, \zeta_1, \zeta_2), \ell_a(\zeta_0) \]
Example of instance in the crayfish-chase

\[
\begin{align*}
r_1(\zeta_0, \zeta_1, \zeta_2) & \quad \ell_a(\zeta_0) \\
\ell_a(\zeta_0) & \quad r_2(\zeta_3, \zeta_1) \\
r_1(\zeta_4, \zeta_5, \zeta_3) & \\
\ell_a(\zeta_4) & \quad r_2(\zeta_6, \zeta_5) \\
r_1(\zeta_4, \zeta_5, \zeta_3) & \quad r_3(\zeta_6)
\end{align*}
\]
Example: another instance in the crayfish-chase

\[r_1(\zeta_0, \zeta_1, \zeta_2) \]
\[\ell_a(\zeta_0) \]
\[r_3(\zeta_0) \]
\[r_2(\zeta_3, \zeta_1) \]
\[\ell_a(\zeta_3) \]
Main property of the crayfish-chase

Theorem

\[q_1 \subseteq_{\land, I} q_2 \text{ if and only if for every database } C \in \text{cchase}(q_1, S, I) \]

\[\text{frozen_head}(q_1) \in q_2(C) \]

(frozen_head(q_1) is the same in every DB in the chase)
Main property of the crayfish-chase

Theorem

\[q_1 \subseteq_{\wedge,I} q_2 \text{ if and only if for every database } C \in \text{cc chase}(q_1, S, I) \]
\[\text{frozen_head}(q_1) \in q_2(C) \]

(frozen_head(q_1) is the same in every DB in the chase)

Warning

No indication of a strategy for deciding containment!
- it is possible that there is an infinite number of databases in a chase
- there is no bound on the size of databases in the chase
Decidability

Theorem

IF there exists a finite database \(C \in \text{cchase}(q_1, S, I) \) such that \(q_1(C) \not\subseteq q_2(C) \),

THEN there exists another finite database \(C' \in \text{cchase}(q_1, S, I) \) such that

1. \(q_1(C') \not\subseteq q_2(C') \), and
2. \(C' \) has maximum level \(\delta = 2 \cdot |S| + |q_2| - 3 \)
Decidability

Theorem

IF there exists a finite database \(C \in \text{cchase}(q_1, S, I) \) such that \(q_1(C) \not\subseteq q_2(C) \),

THEN there exists another finite database \(C' \in \text{cchase}(q_1, S, I) \) such that

1. \(q_1(C') \not\subseteq q_2(C') \), and
2. \(C' \) has maximum level \(\delta = 2 \cdot |S| + |q_2| - 3 \)

Consequence

It is sufficient to check all databases in the chase up to a certain number of levels
Idea of the proof: iterative subtree replacement

- Take a counterexample C in $cchase(q_1, S, I)$
Idea of the proof: iterative subtree replacement

- Take a counterexample C in $\text{cchase}(q_1, S, I)$
- if C exceeds the level δ, “shorten” it
Idea of the proof: iterative subtree replacement

- Take a counterexample C in $\text{cchase}(q_1, S, I)$
- if C exceeds the level δ, “shorten” it

- C is “shortened” by tree replacement
Idea of the proof: iterative subtree replacement

- Take a counterexample C in $\text{cchase}(q_1, S, I)$
- if C exceeds the level δ, "shorten" it
- C is "shortened" by tree replacement
- at each replacement, we get another counterexample
Complexity

Theorem

The complexity of checking containment of conjunctive queries under access limitations is in co-NEXPTIME.
Complexity

Theorem

The complexity of checking containment of conjunctive queries under access limitations is in co-NEXPTIME.

Proof sketch

1. guess $C \in \text{cchase}(q_1, S, I)$ of depth less than the sufficient one; size W^δ (W: max. arity)
2. evaluate q_2 over C: feasible in polynomial time in C and det. exp. time in q_2
3. if no counterexample to containment is found, then containment holds (otherwise containment does not hold)
Conclusions

- Query Containment under relational constraints
 - decidable cases (relevant to practice)
 - tight complexity bounds
 - applications to answering queries on incomplete data
- Conjunctive query containment under access limitations
 - containment of special Datalog queries
 - notion of crayfish-chase
 - complexity (upper bound)
Conclusions

- Query Containment under relational constraints
 - decidable cases (relevant to practice)
 - tight complexity bounds
 - applications to answering queries on incomplete data

- Conjunctive query containment under access limitations
 - containment of special Datalog queries
 - notion of crayfish-chase
 - complexity (upper bound)
Acknowledgments

Thanks to:

- Georg Gottlob
- Davide Martinenghi
- ESPRC Data Exchange project (UK)
- ...
Acknowledgments

Thanks to:

- Georg Gottlob
- Davide Martinenghi
- ESPRC Data Exchange project (UK)
- ...