
Non-standard inference services for mobile
computing: concept abduction via m-OODBMS

Michele Ruta, Floriano Scioscia, and Eugenio Di Sciascio

Politecnico di Bari, Via Re David 200, I-70125, Bari, ITALY
[m.ruta,f.scioscia,disciascio]@poliba.it

Abstract. Though increased potentialities of handheld devices allow to
apply discovery approaches designed for the Semantic Web, care has to
be paid in re-designing original frameworks and algorithms. The paper
presents a revision of basic inference services leveraging object-oriented
Database Management System to perform semantic matchmaking and
provide logical explanations. OWL-DL Knowledge Bases have been prop-
erly migrated towards an object oriented version to enable reasoning by
addressing proper queries to a mobile DB. The proposed framework has
been implemented and tested: preliminary results have been reported.

1 Introduction

Most common matchmaking approaches have been shown to be inadequate in
unpredictable and volatile resource discovery scenarios (e.g., wireless sensor net-
works, disaster recovery or mobile commerce applications) [1]. Solutions devised
for wired and stable scenarios are impractical to be transferred to mobile and
ubiquitous computing. Particularly, logic-based matchmaking –borrowed from
approaches tailored for the Semantic Web– provides useful means to accomplish
advanced discovery tasks in ad-hoc contexts, but it is very hard to be successfully
applied there.

Considering that a generic semantic-based matchmaking and the Object Ori-
ented Programming (OOP) paradigm share some basic notions such as class,
object (i.e., class instance) and inheritance ones, and furthermore that Object
Oriented Data Base Management Systems (OODBMSs) have a good flexibility in
managing changes occurred to their elements and to relationships among them,
it could be an interesting issue trying to devise basic inference services exploiting
object DBMS. This paper introduces a possible approach to reasoning in mobil-
ity, implementing two basic inferences for retrieving compatible resources w.r.t.
a request and computing concept abduction. The proposed approach translates
into an object oriented fashion the reference Knowledge Bases (KBs) allowing
to execute reasoning tasks by issuing queries to a mobile database.

Experiments to prove the feasibility of the proposal have been conducted on a
Java-based open source OODBMS, i.e., db4o1, and evidence the expressiveness
of adopted formalisms plays a critical role: we selected the ALN Description
1 db4o: Native Java and .NET Open Source Object Database, http://www.db4o.com/



Logic (DL) and the sublanguage deriving from OWL-DL2 to model ontologies,
requests and resource annotations in the simple-TBox (for Terminological Box)
hypothesis.

The remaining of the paper is structured as follows: in the next Section we
report on most relevant related work about reasoning (particularly in pervasive
environments); afterward, in Section 3 we move on to the presentation of the
proposed framework and approach. Relevant experiments we carried out are
described in Section 4 and finally conclusions close the paper.

2 Related work

In a Knowledge Representation System (KRS), domain knowledge can be de-
clared explicitly –in a suitable logic-based language– and manipulated by general-
purpose algorithms. An interface of reasoning services is provided to end-user
applications. Hence KRSs are also called reasoners. From an architectural stand-
point, the role of a KRS has always been similar to a DBMS. Both act as back-end
repositories where knowledge of the problem domain can be inserted (forming
a KB) and upon which automated reasoning tasks can be performed so as to
extract implicit knowledge. Nevertheless, this approach is effective only as long
as relatively large computing resources and a stable network infrastructure are
available. The Semantic Web vision posed new technological challenges to stan-
dard DL-based KRSs. In a semantic-enabled WWW, available resources should
be annotated w.r.t. OWL-DL ontologies. This allows the use of DL-based rea-
soners to infer new information from the one available in annotations [2]. The
large scale of managed knowledge and the complexity of reasoning procedures
were the main issues. Research has made significant progress in devising op-
timization techniques to achieve acceptable performance for reasoning services
applied to adequately expressive languages [3, 4].

A still different approach is needed to adapt KR technologies and tools to
mobile and pervasive computing applications. Embedding reasoning capabilities
into mobile computing devices appears as a needed condition for fully decentral-
ized semantic-based applications in pervasive contexts. Pocket KRHyper [5] was
the first reasoning engine for mobile devices. It was built as a Java ME (Micro
Edition) library. It supports the Description Logic ALCHIR+. Pocket KRHy-
per provides standard satisfiability and subsumption inference services. They
were exploited by the authors in a DL-based matchmaking framework between
user profiles and descriptions of mobile resources/services [6]. That solution has
some points in common with the one proposed in the present work, particularly
the use of two queries for match evaluation. That scheme, however, can only
distinguish among full, potential and partial match types (adopting the termi-
nology of [7]). This is due to the fact that satisfiability and subsumption provide
only binary “true/false” answers. Our abductive matchmaking approach enables
a more fine-grained semantic ranking as well as explanation of outcomes. Müller
2 OWL Web Ontology Language, W3C Recommendation 10 February 2004,

http://www.w3.org/TR/owl-features/



et al. [8] reported their early work on the development of a mobile DL reasoner
for the Java ME platform, supporting the language ALCN : no further result
on their effort was published, though. Both the above systems are based on
adapting tableaux algorithms –used in most “wired” DL reasoners– to mobile
computing platforms. This could allow more expressive languages to be used,
but efficient implementation of useful non-standard reasoning services is still an
open problem due to limitations in running time and memory.

In [9], a different approach was proposed to adapt logic-based reasoning ser-
vices to pervasive computing contexts. It was based on simplifying the under-
lying logical languages and admitted axioms in a KB, so that standard and
non-standard reasoning services could be reduced to set-based operations. KB
management and reasoning services were then executed through a data storage
layer, based on a mobile RDBMS (Relational DBMS).

3 Concept Abduction with OODBMS

In what follows, preliminary notions are introduced about the adopted language
and reasoning tasks3 and the framework implementation is described.

Language. The logic language has been selected to be as expressive as pos-
sible, while still allowing polynomial-time inferences for “bushy but not deep”
ontologies. Concept descriptions can include only: (i) concept names: A,B; (ii)
conjunctions: A u B; (iii) universal role quantifications: ∀R.C; (iv) unqualified
number restrictions: (≥ n R), (≤ n R), where R is a role (a.k.a. property), C is
a concept description and n is a non-negative integer. Note that, for any role R,
(≥ 1 R) is semantically equivalent to the unqualified existential restriction ∃R.

The following ontology axioms are allowed: (i) definition: A ≡ B; (ii) in-
clusion: A v B; (iii) disjoint group: disj(A1, . . . , Ak) where A, A1, . . . , Ak are
concept names. This language is known as ALN (Attributive Language with
unqualified Number restrictions) [10].

ALN provides a minimal set of constructs that allow one to represent a
concept taxonomy, disjoint groups, role restrictions (AL), and restrictions on
the number of fillers of a role (N ). Furthermore, ontologies are bound by the
simple-TBox constraints defined in Description Logics literature [11].

Every concept description can be rewritten in a normal form –called Conjunc-
tive Normal Form (CNF)– by applying well-known normalization rules, reported
e.g., in [12]. We observe that normalization of a concept preserves semantic
equivalence w.r.t. models induced by the ontology; furthermore, CNF is unique
(up to commutativity of conjunction operator). The normal form of an unsatis-
fiable concept is simply ⊥. Every satisfiable concept C can be divided into four
components as: Cn u C≥ u C≤ u C∀. The component Cn is the conjunction of
all concept names A1, . . . , Ah. The component C∀ conjoins all concepts of the
form ∀R.D, one for each role R, where D is recursively in normal form. The
components C≥ and C≤ are the conjunction of all at-least and at-most number

3 The reader is supposed to be familiar with basics of Description Logics [10].



Algorithm: checkCompatibility(D, S)

Input: a request D ≡ Dn uD≥ uD≤ uD∀ and a resource S ≡ Sn u S≥ u S≤ u S∀ both satisfiable w.r.t.
T and in CNF

Output: true if D u S is satisfiable w.r.t. T otherwise false;
foreach concept name A in Dn do1

if ¬A is in Sn then2
return false;3

end4
end5
foreach number restriction (≥ n R) in D≥ do6

if (≤ m R) is in S≤ and (m < n) then7
return false;8

end9
end10
foreach number restriction (≤ n R) in D≤ do11

if (≥ m R) is in S≥ and (m > n) then12
return false;13

end14
end15
foreach universal quantifier ∀R.E in D∀ do16

if ∀R.F is in S∀ and checkCompatibility(E, F ) == false then17
return false;18

end19
end20
return true;21

Algorithm 1: Compatibility check

restrictions respectively, no more than one for every role in each component (the
maximum at-least and the minimum at-most for each role), including (≤ 0 R)
in C≤ for every conjunct of C∀ of the form ∀R.⊥. We define the Quantification
Nesting (QN) of a concept as the following positive integer:
QN(C) = 0;

QN(∀R.C) = QN(C) + 1;

QN(C1 u C2) = max(QN(C1), QN(C2)).

In the simple-TBox hypothesis, the ontology can be “embedded” into the con-
cepts through a processing step, known as unfolding [10].

This formalization allows polynomial-time algorithms for standard and non-
standard reasoning tasks that build a non-monotonic semantic matchmaking
framework [7]. Let us consider a request D and a supplied resource S, both
referred to a TBox T in ALN language. The proposed system currently imple-
ments the following reasoning services.

1. Retrieval of compatible supplies. Each available resource is checked against
the request for semantic compatibility, which occurs if their conjunction is sat-
isfiable w.r.t. T , D u S 6vT ⊥. Compatibility check is a sub-case of standard
satisfiability reasoning service and corresponds to request and resource having
something in common and no conflicting features. Algorithm 1 is adopted. In
the current implementation, compatible resources are retrieved from the KB,
whereas incompatible ones are not processed any further by the matchmaker. It
is known that useful outcomes could still be provided by means of concept con-
traction inference service [7]. That feature, though, was planned for subsequent
versions of our mobile matchmaker.

2. Concept Abduction. Given a compatible resource S, the evaluation of
the semantic degree of correspondence with the request is a Concept Ab-
duction Problem (CAP) [7]. Algorithm 2 provides a solution to the CAP
H = solveCAP (S, D) indicating what has to be hypothesized and added to S
in order to completely satisfy the request D. If and only if S v D (S subsumes



Algorithm: solveCAP(D, S)

Input: a request D ≡ Dn uD≥ uD≤ uD∀ and a resource S ≡ Sn u S≥ u S≤ u S∀ both in CNF, with
D u S satisfiable w.r.t. T

Output: a solution H to the Concept Abduction Problem
HA ← >, H≥ ← >, H≤ ← >, H∀ ← >;1
foreach concept name A in Dn do2

if A is not in SA then3
HA ← HA u A;4

end5
end6
foreach number restriction (≥ n R) in D≥ do7

if (≥ m R) is not in S≥ or (m < n) then8
H≥ ← H≥ u (≥ n R);9

end10
end11
foreach number restriction (≤ n R) in D≤ do12

if (≤ m R) is not in S≤ or (m > n) then13
H≤ ← H≤ u (≤ n R);14

end15
end16
foreach universal quantifier ∀R.E in D∀ do17

if ∀R.F is in S∀ then18
H′ ← solveCAP(E, F );19
H∀ ← H∀ u ∀R.H′;20

else21
H∀ ← H∀ u ∀R.E;22

end23
end24
H ← HA uH≥ uH≤ uH∀;25
return H;26

Algorithm 2: Concept Abduction

D), then Algorithm 2 returns H = >, meaning that the resource satisfies the
request completely, i.e., a full match [7] occurs and no hypothesis is required.
Thus, Abduction can be seen as an extension of the standard classification (a.k.a.
subsumption) inference service, also providing an explanation for (missed) sub-
sumption.

Example. A small example can help understand the usefulness of abductive
matchmaking. Let us consider a toy TBox T for the tourism domain, containing
just the axioms (i) Palace v ∃hasAgeu∃hasRoof and (ii) Palace v ¬Church.
Then let us take a request and two resources:
- Request: medieval palace with a courtyard. R ≡ Palace u ∀hasAge.MiddleAge u ∃hasCourtyard

- Resource 1: medieval church with a courtyard. S1 ≡ Churchu∀hasAge.MiddleAgeu∃hasCourtyard

- Resource 2: medieval palace with frescoed roofs. S2 ≡ Palaceu∀hasAge.MiddleAgeu∀hasRoof.FrescoedRoof

Compatibility check allows to determine that S1 is not compatible with R while
S2 is. Furthermore, solveCAP (S2, R) returns H = ∃hasCourtyard, thus point-
ing out the requirement that is not explicitly satisfied. On the contrary, using
standard Subsumption check (like in works mentioned in Section 2) the requester
would obtain just a false outcome, so she would not be aware that S2 matches
her request by a significant extent (it is indeed a medieval palace).

Implementation. In order to perform the above inferences via proper queries,
both ABox and TBox have to be modeled in the OODB. As shown in Figure
1, managed data are structured in three different layers, each one providing a
specific view of the KB.

1. Physical Layer. It refers to the OWL KB, further translated to a proper
db4o database file. In current implementation, the database is built upon an
XML file which describes an ALN KB using a simplified syntax w.r.t. OWL-DL.



Fig. 1. Data organization layers

Fig. 2. HLDSs UML class diagram

Fig. 3. LLDSs UML class diagram

In a preprocessing step, OWL files of thr KB are translated to this intermediate
XML format.

2. High Level Data Structures. They correspond to the logical layer of the
stack. Component classes (see Figure 2) are:

– Item: each KB individual is an instance of this class. The individual name
is reported in the name attribute.

– SemanticDescription: models the individual semantic annotation in CNF.
Hence, it is expressed as aggregation of Cn, C≥, C≤, C∀ components, each one
stored in a different Java Collection. Among methods exposed by this class,
the abduce (SemanticDescription, request) implements the abduction
algorithm (see later on).

– Concept : models an atomic concept Ai of the Cn set; the name variable will
contain the concept name and the denied one, if set to true, allows to express
¬Ai.

– GreaterThanRole (respectively LessThanRole): model number restrictions
belonging to C≥ and C≤ sets. Role name and cardinality are stored in the
homonym variables.



– UniversalRole: each instance of this class refers to a universal restriction
∀R.D belonging to the C∀ set where R will be stored in the name variable
and D will be a SemanticDescription class instance.

3. Low Level Data Structures. In order to make more compact previous in-
formation and to optimize them for the inference algorithms, the HLDSs are
translated into corresponding LLDSs, being manipulated by the DBMS. The
parsing of an HLDS to produce a LLDS involves: (i) the translation of Java
Collections into arrays; (ii) the parsing of role and concept strings into integer
data (this lexical normalization [4] is needed because integers require less mem-
ory and can be searched and compared much more cheaply than strings). Each
role or atomic concept is mapped to a unique positive value; furthermore, if kc

maps an atomic concept C, then −kc will map ¬C. The correct correspondence
between a string and the related integer value is maintained using two different
Java structures, namely an ArrayList and a SortedMap. The former is a list of
elements directly accessible through a specific index. It is used to get the concept
(or role) corresponding to a given integer value (i.e., the access index for that
element). Such a structure allows a very quick inverse translation from LLDSs
to HLDSs. The SortedMap is a hash map exploited for the direct parsing from
concept (or role) names to numerical values, i.e., from HLDSs to LLDSs. The
little redundancy given by having two twin structures is largely repaid by a con-
sistent speed-up in string-integer translations. Figure 3 shows the UML diagram
of LLDSs. In what follows each class is detailed.

– DBItem: each instance of this class corresponds to only one instance of the
above Item HLDS. These two classes basically differ only for Java implemen-
tation details. Notice that, leaving out the correspondence maps, individual
names are the only strings the database uses.

– DBSemanticDescription: also in this case there is a one-to-one correspon-
dence with the above SemanticDescription. The conversion from LLDSs to
HLDSs is performed as follows:
• Concept : each object is converted into an integer value and further in-

serted into an array. To this aim the correspondence maps are exploited
after the lexical normalization described before.

• GreaterThanRole (LessThanRole respectively): bi-dimensional integer
arrays are used. As for concepts, the restricted role is converted into
an integer value; the cardinality is expressed with a further value asso-
ciated to each restriction.

– DBUniversalRole: it maps the correspondent HLDS UniversalRole; the inte-
ger id attribute replaces the name string following the correspondence maps.

Concept Abduction Before running the abduction algorithm an early com-
patibility check has to be made aiming at excluding incompatible resources. Note
that the Transparent Activation [13] in db40 allows to load in memory only the
components to be compared with the request, so avoiding complex and unnec-
essary role fillers. The compatibility check is executed at the DB layer by means
of the following native query [13]:



List potentialDBItems = db.query(new Predicate() {
public boolean match(DBItem dbItem) {

return dbItem.checkCompatibility(demand,
DBSemanticDescription);

}
});

The argument of the query() method is a predicate defining a match()
method. match() executes the comparison among request and individual descrip-
tions exploiting checkCompatibility() of the DBSemanticDescription class
(which implements Algorithm 1). The query returns a set of compatible re-
source instances in LLDS form, to be translated in the corresponding HLDSs.
Noteworthily, for each atomic concept in the request, condition in line 2 of Algo-
rithm 1 simply corresponds to searching for the negated integer in the concept
array of the resource. Similarly, restrictions on the same property in line 6, 11,
16 in both request and resource are detected through elementary integer com-
parisons.

Abduction is executed by the abduce() method of the SemanticDescription
class. When applied to a SemanticDescription object, it accepts in input the
request description and returns not covered request features. They are modeled
in a new SemanticDescription instance called uncovered. In the first loop of
Algorithm 2 the following instruction is executed:

if (!this.concepts.contains(requestConcept))
uncovered.addConcept(requestConcept);

Notice that the contains() method of the Java Collection interface uses the
equals() one to select objects in the collection. To reach the algorithm purpose
this method has been overridden in the Concept class: its new implementation
returns true iff two concept names in comparison are exactly the same. In both
second and third loops, numerical restrictions are considered. The contains()
method is used as explained before: in the GreaterThanRole and LessThanRole
classes, equals() has been redefined in order to return true only if role names
coincide and related cardinality is less than (respectively greater than). The last
loop refers to universal quantifiers. When a universal quantifier of the same role
is in both the request and the supplied resource, the abduction algorithm is
executed recursively on the respective fillers.

4 Experimental Evaluation

Experiments covered all steps of system usage, namely Knowledge Base creation,
retrieval of compatible supplies and abduction. Running time and memory us-
age were measured by means of profiling tools of NetBeans 5.54 development
environment. All tests were performed on a Toshiba SA50-432 notebook PC,
equipped with 1.5 GHz Intel Centrino CPU, 512 MB of RAM and Microsoft
Windows XP operating system. Three KBs of different size and complexity were
used for the tests: their features are summarized in Table 1.
4 NetBeans IDE, http://www.netbeans.org/



Object Database creation. In addition to the three realistic KBs, 48 ones
were randomly generated by varying several parameters as reported in Table 2.

Domain Toys Clothing Electronics

XML input size (KB) 4 81 1823
] of concepts 19 86 280
] of roles 8 18 69
] of instances 7 35 42
avg ] of concept names per CNF expression 2.8 4.1 6.6
avg ] of number restrictions per CNF exp. 1.2 4.8 1.7
avg ] of universal quantifications per CNF exp. 1.4 6.0 2.1
maximum quantification nesting (QN) 2 2 12

Table 1. Summary of realistic Knowledge Bases used for tests

Parameter Values

] of instances 10, 100, 1000
] of atomic concepts per CNF expression 2, 8
] of number restrictions per CNF expression 2, 6
] of universal quantifications per CNF expression 2, 6
maximum quantification nesting (QN) 4, 12

Table 2. Selected parameters for random Knowledge Base generation

Fig. 4. Ratio between DB output and XML input size

Evaluated performance metrics include: output DB size (both absolute value
and ratio over XML input size), processing time, throughput (amount of input
data processed per time unit) and main memory peak during DB creation. Time
and memory results are the average of 5 consecutive runs of the test suite.
We must point out that some test cases were not completed due to an out
of memory error raised by the DOM (Document Object Model) XML parsing
library. In particular, this happened for random KBs having simultaneously:
≥ 100 instances; 6 universal quantifications for each level of a CNF expression;
maximum QN set to 12. That corresponds to a worst case of 612 = 2, 176, 782, 336
universal quantifications for each instance, which is far above typical cases.

Figure 4 shows the size ratio between XML input and DB output. Random
KBs are grouped by number of instances, then in 4-tuples characterized by the
same average of atomic concepts and number restrictions. Chart inspection and
correlation values evidence that the ratio mainly depends on two KB parameters,
namely the average number of universal quantifications and the quantification
nesting. For simpler KBs the ratio is quite high, whereas for more complex KBs
the object database has a proportionally lower memory footprint: this can be
deemed as an effect of lexical normalization.

Figure 5 illustrates results for DB creation time. Time strongly depends on
input KB size; average times for random KBs with 10, 100 and 1000 instances



Fig. 5. DB creation time

Fig. 6. Main memory usage peak for re-
trieval of compatible instances

Fig. 7. Main memory usage peak for ab-
duction

are 1.94, 2.33 and 14.44 s respectively, hence denoting a less-than-linear growth.
Number of universal quantifications and QN are the structural properties that
affect processing time the most. Throughput is highly correlated with input size
(i.e., larger Knowledge Bases are processed relatively faster), varying from few
kB/s for smaller Knowledge Bases to hundreds of kB/s for larger ones. Finally,
the main memory peak during processing depends fundamentally on QN and the
number of roles in concept descriptions. The maximum value is 35 MB. Collected
results, however, are not able to provide a complete picture of memory usage, due
to the above issue with the DOM parser. A reimplementation of XML parsing
module is underway using a more efficient SAX (Simple API for XML) library,
that will allegedly shed more light over factors influencing memory cost.

Reasoning services. Retrieval of compatible instances and concept abduc-
tion were tested on the three real KBs. For Toys and Clothing KBs, having a
maximum QN of 2, a set of 5 requests each was prepared. For the Electronics
KB, having a maximum QN of 12, a set of 10 requests with varying complexity
was built. For each request, every instance of the KB was checked for compatibil-
ity as a first step, then abduction was performed between the request expression
and those resources which passed the first check. Turnaround time and main
memory peak were measured at each stage. Each test was repeated 5 times and
average values were taken.

Figure 6 shows the memory usage peak for the retrieval of compatible in-
stances. The QN of each request is reported along the horizontal axis, while the
number of retrieved instances is displayed in white upon each bar in the graph.
Memory usage seems to be dependent on the size and complexity of the KB,
regardless of both the QN of the request and the number of retrieved instances;



Fig. 8. Turnaround time

this is especially clear for the Electronics KB. Figure also shows that memory
usage in idle state –i.e., after DB creation and before a request is submitted–
exhibits little variation among the three Knowledge Bases (being 2364 kB, 2035
kB and 2664 kB respectively), which suggests that the adoption of the object
database does not introduce noticeable overhead.

Figure 7 likewise reports the memory usage peak for the abduction stage.
Values for requests C5 and E3 are blank because no compatible instance was
found, so abduction could not be performed. The average value of 6.1 MB and
the worst-case value of 19.6 MB are congruent with memory amounts of typical
current mobile devices. The dependency of memory usage upon size and com-
plexity of the Knowledge Base is even more manifest here, since the memory
allocation gap from the idle state has different orders of magnitude in the three
request groups (tens, hundreds and thousands of kB respectively).

Figure 8 reports results for aggregate turnaround time, also showing its two
component tasks. It shows that time mostly depends on the complexity of the
given KB. Overall performance can be deemed satisfactory, since all but one
query on the largest KB require less than 1.5s, and time is much lower for smaller
KBs. The duration of compatible retrieval task shows a mild correlation with
the QN of the request, whereas no significant relation can be determined with
the number of retrieved instances. This is likely due to the OODBMS approach,
which translates instance retrieval and compatibility check into a set of queries
on the database. On the other hand, the duration of the abduction process
is highly dependent both on the complexity of the KB and on the number of
abduction tests that are executed w.r.t. a given request. This may be explained
by the fact that the algorithm acts upon in-memory data structures with no
involvement of the DB. This could also justify the strong correlation between
time and memory usage at abduction stage, which can be noticed comparing
Figure 7 and the abduction time bars in Figure 8.

5 Conclusion

We proposed algorithms and a lightweight implementation of basic inference ser-
vices for mobile devices. Proper reasoning tasks are performed issuing structured
queries over an object oriented database modeling a given KB. The intrinsic



structure of an object oriented model of a DB lets relationships emerge among
domain entities built as structured objects. Hence, we used it for information
elicitation starting from what is explicit in the model instance. Proposed algo-
rithms and approach have been tested on handheld devices using a Java-based
open source OODBMS obtaining an early verification of their effectiveness. Fu-
ture work will aim at implementing contraction algorithm whereas further opti-
mizations are in progress to improve system performances.

References

1. Chen, H., Joshi, A., Finin, T.: Dynamic Service Discovery for Mobile Computing:
Intelligent Agents MeetJini in the Aether. Cluster Computing 4(4) (2001) 343–354

2. Baader, F., Horrocks, I., Sattler, U.: Description Logics as Ontology Languages
for the Semantic Web. Festschrift in honor of Jorg Siekmann, Lecture Notes in
Artificial Intelligence. Springer-Verlag (2003)

3. Baader, F., Hollunder, B., Nebel, B., Profitlich, H., Franconi, E.: Am empiri-
cal analysis of optimization techniques for terminological representation systems.
Applied Intelligence 4(2) (1994) 109–132

4. Horrocks, I., Patel-Schneider, P.: Optimizing description logic subsumption. Jour-
nal of Logic and Computation 9(3) (1999) 267–293

5. Sinner, A., Kleemann, T.: KRHyper - In Your Pocket. In: Proc. of 20th Inter-
national Conference on Automated Deduction (CADE-20), Tallinn, Estonia (July
2005) 452–457

6. Kleemann, T., Sinner, A.: User Profiles and Matchmaking on Mobile Phones.
In Bartenstein, O., ed.: Proc. of 16th International Conference on Applications
of Declarative Programming and Knowledge Management INAP2005, Fukuoka.
(2005)

7. Colucci, S., Di Noia, T., Pinto, A., Ragone, A., Ruta, M., Tinelli, E.: A
non-monotonic approach to semantic matchmaking and request refinement in e-
marketplaces. International Journal of Electronic Commerce 12(2) (2007) 127–154

8. Müller, F., Hanselmann, M., Liebig, T., Noppens, O.: A Tableaux-bades Mobile
DL Reasoner - An Experience Report. In: Proceedings of the 2006 International
Workshop on Description Logics (DL 06), Lake District, UK (May 2006)

9. Ruta, M., Di Noia, T., Di Sciascio, E., Piscitelli, G., Scioscia, F.: Semantic-based
mobile registry for dynamic RFID-based logistics support. In: 10th International
Conference on Electronic Commerce, ICEC 08, ACM Press (2008) ISBN 978-1-
60558-075-3.

10. Baader, F., Calvanese, D., Mc Guinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook. Cambridge University Press (2002)

11. Donini, F., Lenzerini, M., Nardi, D., Schaerf, A.: Reasoning in Description Log-
ics. In Brewka, G., ed.: Principles of Knowledge Representation: Studies in Logic,
Language and Information. CSLI Publications (1996) 191–236

12. Di Noia, T., Di Sciascio, E., Donini, F.: Semantic matchmaking as non-monotonic
reasoning: A description logic approach. Journal of Artificial Intelligence Research
(JAIR) 29 (2007) 269–307

13. S. Edlich and, H.H., Hörning, R., Paterson, J.: The Definitive Guide to db4o.
Apress edn. (June 2006)


