
Querying Compressed Knowledge Bases in
Pervasive Computing

Eugenio Di Sciascio1, Michele Ruta1, Floriano Scioscia1, and Eufemia Tinelli2

1 Politecnico di Bari, Via Re David 200, I-70125 Bari, Italy,
[disciascio, m.ruta, f.scioscia]@poliba.it,

2 Universitá degli Studi di Bari, Via Orabona 4, I-70125 Bari, Italy,
tinelli@di.uniba.it

Abstract. In the so-called Semantic Web of Things (SWoT), annotated
information is tied/derived to/from micro-devices, such as RFID tags
and wireless sensors, deployed in an environment. Compression tech-
niques are so needed, due to the verbosity of semantic XML-based lan-
guages. Beyond compression ratio, query efficiency is a key aspect for
knowledge discovery in mobile ad-hoc scenarios where resources are con-
strained and topology is unpredictable. This paper proposes a querying
schema for OWL knowledge bases, serialized in RDF/XML syntax and
homomorphically compressed. The final goal is to allow query evaluation
without requiring decompression. Algorithms are presented to prove the
feasibility of the proposed approach, while practical examples highlight
its usefulness.

1 Introduction and Motivation

In pervasive computing, several factors make information availability as unpre-
dictable: network topology evolution due to node mobility, range limitations
and inherent unreliability of wireless communications, node failure due to en-
ergy depletion. Thus, approaches based on centralized information storage and
management are impractical. Several proposals for collaborative, dynamic re-
source discovery in ad-hoc networks can be found in literature. In some of them
the exploitation of semantics allows to enhance retrieval effectiveness also cop-
ing with volatility and unpredictability. The so-called Semantic Web of Things
(SWoT) aims at the integration of Semantic Web and pervasive computing tech-
nologies, in order to associate semantically rich information to real-world objects,
locations and events. Data is derived and/or carried by inexpensive, disposable
and unobtrusive micro-devices, such as Radio Frequency IDentification (RFID)
tags and wireless sensors, attached to everyday items or deployed in given en-
vironments. Due to power, size and cost constraints, they are usually equipped
with little or no processing capabilities, very small storage and short-range, low-
throughput wireless links. Data should be extracted and processed by agents on
mobile computing devices, through wireless ad-hoc networks.

According to Linked Data best practices, information resources in the Seman-
tic Web should be denoted by dereferenceable URIs (Uniform Resource Identi-
fiers) and annotated in RDF (Resource Description Framework, http://www.w3.

2

org/TR/rdf-primer/) w.r.t. an RDF Schema (http://www.w3.org/TR/rdf-schema/)
or OWL (Web Ontology Language, http://www.w3.org/TR/owl2-overview/)
ontology [1]. Language specifications include a standard XML serialization syn-
tax. Adopted knowledge representation models are grounded on formal, logic-
based semantics. Query languages, e.g., SPARQL (SPARQL Protocol And RDF
Query Language, http://www.w3.org/TR/rdf-sparql-query/), are defined to ex-
tract and combine asserted information, while reasoning engines can perform
automated inference of knowledge entailed by a given Knowledge Base (KB).

One of the most important issues restraining a coherent development of the
SWoT vision is the verbosity of the adopted XML-based languages: it is a signif-
icant hindrance to efficient storage and transmission of semantic annotations, so
that compression techniques become essential. Furthermore, when evaluating en-
coding algorithms from the SWoT perspective, traditional metrics such as com-
pression ratio and speed are not enough: efficiency and effectiveness of queries
on compressed data are critical aspects. Particularly, compression schemes al-
lowing to directly evaluate queries on encoded annotations, without full decom-
pression [2, 3], can be very useful. Unfortunately, so far research has been fo-
cused on data extraction from generic structured documents referred to an XML
Schema. Hence, main motivation for the present work is that efficient execution
of semantic-based queries on compressed KB fragments (ontology segments or
resource annotations) can significantly enhance resource discovery capabilities in
mobile contexts. So this paper introduces a formal framework for querying OWL
Knowledge Bases, serialized in RDF/XML and encoded with COX (Compres-
sor for Ontological XML-based languages) [4], which exploits the homomorphism
property to preserve document structure during compression. Algorithms are de-
fined for the execution of most common elementary queries in the Semantic Web
literature. Main contribution is in demonstrating both feasibility and soundness
of such general-purpose semantic-based interrogations for on-the-fly knowledge
extraction from compressed KBs. Several possibilities are opened for further ap-
plied research, devoted to support the integration in high-level query languages
(e.g., SPARQL) and inference services by simply and properly combining the
proposed query building blocks.

The remaining of the paper is structured as follows. Technical background
about KB compression is briefly recalled, before discussing the proposed ap-
proach in Section 2, while a case study in Section 3 provides a toy example to
highlight usefulness of the proposal. After reporting on relevant related work in
Section 4, Section 5 closes the paper.

2 Framework

2.1 Background

Lossless compression is based on substitution of symbols in the input message
with code words, according to a statistical model for the input source. Huffman
coding and arithmetic encoding [5] are two fundamental techniques. The for-
mer exploits a code table (the huffman tree), derived from symbol frequencies.

3

Widespread universal compression tools gzip (http://www.gzip.org/) and bzip2
(http://bzip.org/) combine Huffman coding with pre-processing input transfor-
mations (Lempel-Ziv LZ77 algorithm and Burrows-Wheeler transform, respec-
tively); the latter has better compression rate but it is also slower. In arithmetic
encoding, instead, the whole message is represented by a real number in the
[0, 1) interval. Disjoint sub-intervals are assigned to all possible symbols, whose
length is proportional to symbol frequency. An input message is then mapped
to an interval I as follows: at the beginning, I = [0, 1); for each symbol S, I is
reduced proportionally to the sub-interval of S. At the end, any value in I will
unambiguously encode the sequence of symbols in the message.

Since Semantic Web languages are based on XML syntax, XML-specific al-
gorithms can achieve higher compression rates than universal ones, by exploiting
inherent syntactic constraints. An important property is homomorphism [2]: ho-
momorphic compression preserves the structure of the original XML data. That
may allow to evaluate queries directly on compressed formats, by detecting docu-
ment pieces which satisfy given query conditions without preliminary decompres-
sion of the whole document. XGrind [2] and XPress [3] are relevant homomor-
phic compression approaches, adopting Huffman coding and Reverse Arithmetic
Encoding (RAE), respectively. They achieve high query performance for com-
pressed XML data by virtue of homomorphism; compression rates, though, are
lower than the best non-homomorphic XML compression algorithms.

COX (Compressor for Ontological XML-based languages) [4] is adopted here
as reference format for querying compressed XML-based semantic annotations. It
exploits different solutions to encode data structures (XML tags, attributes) and
data (attribute values), in a two-step compression process. For data structures,
a RAE variant is used. For attribute values, a dictionary is used to map the most
frequent strings to 1-byte codes. COX deals with tag and attribute names in the
same way. Attributes are distinguished by a “@” prefix. Therefore, in the rest of
the section the word “tag” will refer equivalently to a tag or to an attribute.

In the first step, the XML document is parsed and statistics are gathered.
After parsing, frequency of each tag name is computed as ratio between the num-
ber of occurrences of the tag itself and the total document tags. The [d,D) =
[1.0 + 2−7, 2.0 − 2−15) interval is then split in disjoint sub-intervals, assigning
slightly longer sub-intervals to very rare tags while preserving proportionality
with respect to frequency. That avoids encoding errors for tags with a very low
frequency. All values representing opening tags fall in the interval [d,D). The
interval [1.0, d) is reserved to encode closing tags. Since every possible value is
strictly between 1.0 and 2.0, the first byte will always be 011111112 in 32-bit
floating point representation, so it can be truncated without loss of information
[3]. After the first step a tag header is written at the beginning of the output
file. It contains a sequence of records composed by: 1 byte for the length of the
tag name; the tag name; 3 bytes (after truncation) for encoding the minimum
value of the sub-interval related to the tag. The statistic collection for text string
frequencies is performed concurrently with the analysis of document structure:
strings with both length and frequency higher than heuristic thresholds are en-

4

coded. At the end of the first step, a value header is written after the tag header.
It consists of a sequence of strings, separated by the ffh character. The corre-
sponding codes are single-byte values from 00h to fdh and they are assigned to
strings in progressive order, hence they can be omitted in the header.

In the second step, the body of the output file is produced. Opening and
closing tags, attributes and attribute values are encoded in the same order as
they appear in the input document to preserve homomorphism. Each tag T
is encoded by applying RAE: as input message, the sequence of tag names is
considered, starting with T and going toward its ancestors (hence the adjective
“reverse”) up to the root XML tag. The sub-interval corresponding to this tag
path (named simple-path) is computed; then its minimum limit is represented as
a 32-bit floating point value and the two central bytes are taken to encode T (the
loss of precision due to discarding the least significant byte of the mantissa does
not prevent a correct tag identification). Finally, an attribute value is processed
as follows: if it belongs to the dictionary produced in the first step, it is replaced
by its 1-byte code followed by the delimiter feh, otherwise the string is copied
to output, followed by the delimiter ffh.

2.2 Querying Approach

In the proposed framework, the classical KB definition K = ⟨T ,A⟩ is adopted,
where the TBox T refers to the ontological knowledge, and the ABox A specifies
the assertional one. The framework deals with KBs in an OWL-DL subset whose
characteristics are:

– T is a simple TBox, i.e., a set of Primitive Concept Specifications (A ⊑ B);
– object properties, data properties and disjoint concepts sets can be defined;
– A is a role-free ABox, i.e., it is a finite set of individuals defined as instances

of a general concept expression C without binary relations between indi-
viduals. C can be a conjunction of atomic concepts, unqualified existential
quantifications, number restrictions and universal quantifications.

The adoption of a role-free ABox allows to reduce reasoning on assertional
knowledge to reasoning on ontological one. Moreover, the selected OWL-DL
subset ensures a good trade-off between expressiveness and computational com-
plexity in real applications, as discussed in [6]. Both keyword-based search and
a set of path-based queries will be proposed, in order to obtain useful classical
inferences on T and query answering on A. In what follows, it will be shown
how, starting from a minimum query set, several other queries can be incremen-
tally built. In fact, the proposed querying approach can be used to cope with
non-standard inference services in [7, 6]; deeper discussion is beyond the scope
of this work. With reference to TBox reasoning, a set of path-based queries is
presented, most of which are exploited in [8]:

– parents(A) - it retrieves all the concepts B such that A is direct sub-class of
B. Obviously, it is possible to retrieve all the ancestors B of A recursively
applying the parent primitive to B until B is different from Top concept.

5

Fig. 1. Instance description in OWL and graph-based representation

– children(A) - it retrieves all the concepts B such that B is direct sub-class
of A. Also in this case it is possible to retrieve all the descendants B of A
applying recursively the children primitive to B until B is different from
Bottom concept.

– properties(A) - it retrieves all the properties P such that A is domain of P .
– leaves(A) - it retrieves all the concepts B as most specific of A. More for-

mally, leaves(A) = {B|B = subClassOf(A)∧¬∃B′ : (B′ = subClassOf(A)∧
B′ = subClassOf(B))}.

With reference to ABox reasoning, two query models are presented: (i) entity-
based search, implemented by means of string matching on the required concepts
and their descendants, and (ii) path-based queries. The former is useful when the
domain knowledge organization is unknown. The latter can be considered as a
solution to the classical query answering problem. Note that a KB instance can
be seen as graph partition reflecting the representational model used in COX
algorithm (see the example in Figure 1). Some nodes can be distinguished as
having the same depth w.r.t. document root (i.e., rdf:RDF tag), and some other
ones are in “partial order” among them. Hence, with reference to the graph in
Figure 1, owl:Restriction tag directly precedes owl:allValuesFrom tag (i.e.,
one hop of distance), while owl:allValuesFrom and owl:onProperty tags are
at the same depth level.

The proposed query engine refers to the RDF/XML serialization recom-
mended by OWL 2 language specifications. The support for all syntactic variants
of RDF/XML is not explicitly dealt with.

Primitives. The following simple-paths will be referenced in query execution
algorithms to find elements in the RDF model. For reader’s convenience, they
are not reported in reverse order.

P1 rdf : RDF → owl : Class → @rdf : about
P2 rdf : RDF → owl : ObjectProperty → @rdf : about
P3 rdf : RDF → owl : Class → rdfs : subClassOf → @rdf : resource
P4 rdf : RDF → owl : ObjectProperty → rdfs : domain → @rdf : resource
P5 rdf : RDF → rdf : Description → @rdf : about
P6 rdf : Description → rdf : Type → owl : Class → owl : IntersectionOf →

owl : Restriction → owl : onProperty → @resource

6

P7 rdf : Description → rdf : Type → owl : Class → owl : IntersectionOf →
owl : Restriction → owl : onProperty → owl : allV aluesFrom →
owl : Class → @rdf : about

P8 rdf : Description → rdf : type → owl : Class → owl : intersectionOf

→ rdf : Description → @rdf : about

Query execution is based on a set of primitives for accessing COX compressed
documents, whose structure, as said, consists of a tag header HT , a value header
HV and a body B. The primitives are listed in Table 1 and explained hereafter.
HT , HV , B are supposed to be always accessible. Data complexity characteriza-
tion is provided, along with required (read-only) accesses w.r.t. input size.

– lookupTag searches for a tag name in HT ; if found, it returns its associated
interval, else it returns null.

– lookupValue searches for a string value in HV ; if found, it returns its associ-
ated 1-byte code, else it returns the value of the input argument.

– lookupValueLike searches for HV within strings containing the input ar-
gument; it returns the (possibly empty) set of 1-byte codes associated to
matching strings.

– lookupCode searches for a code in HV ; if found, it returns its associated
string, else it returns null.

– computeSimplePath computes the simple path interval; it uses the arithmetic
encoding algorithm described in Section 2.1 and requires a lookupTag call
for each element in the simple path.

– findPathsWithValue takes in input an interval i and a string value v; it gets
c := lookupV alue(v), then it scans B to find all occurrences of the simple
path encoded by i followed by c; they are returned as positions (in bytes)
from the B beginning.

– findPathsWithValueLike is similar to the previous primitive. It takes in input
an interval i and a string value v, and it scans B to find all occurrences of
the simple path encoded by i followed by a string containing v; they are
returned as positions (in bytes) from the B beginning.

– getValuesAfter takes in input an interval i and a position n; it scans the
document from position n, up to the end of the related XML element. It
returns a (possibly empty) set of string values following attributes encoded
with a value in i.

– getValuesBefore scans the document backwards from position n up to the
beginning of the nth XML element.

Queries. Algorithm 1 and Algorithm 2 exploit simple-paths P1 and P3 and
COX access primitives to find parents and children of a given class, respectively.
Algorithm 3 (resp. 4) calls Algorithm 1 (resp. 2) to find the class ancestors (resp.
descendants). In order to find leaves of a given class the previous algorithms have
to be exploited, as reported in Algorithm 5. Algorithm 6 uses simple-path P4 to
look up for a domain relationship between the input class and a property name,
then P2 to find the property name by scanning the compressed document back-
wards. Algorithm 7 performs keyword-based search using partial string matching
both in the document header and body. Finally, Algorithm 8 finds the ABox in-
dividuals that are instances of a class intersection.

7

Name Input Output Complexity
lookupTag(t) tag name t interval or null O(|HT |)
lookupV alue(v) string value v code of v or v itself O(|HV |)
lookupV alueLike(v) string value v (possibly empty) set of

codes of strings contain-
ing v

O(|HV |)

lookupCode(c) code c between 0 and 253 string at position c in
HV or null

O(|HV |)

computeSimplePath(P) simple path P interval or null O(|P | × |HT |)
findPathsWithV alue(i, v) interval i of simple path,

string value v
(possibly empty) set of
occurrences, as positions
from start of document

O(|B| + |HV |)

findPathsWithV alueLike(i, v) interval i of simple path,
string value v

(possibly empty) set of
occurrences, as positions
from start of document

O(|B|)

getV aluesAfter(i, n) interval i, position n (possibly empty) set of
strings

O(|B| + |HV |)

getV aluesBefore(i, n) interval i, position n (possibly empty) set of
strings

O(|B| + |HV |)

Table 1. Access primitives for a COX compressed document

Algorithm 1 parents(a)
Require: a class name, P1 and P3 simple-paths
Ensure: P set of parents of a
1: P := ∅
2: i1 := computeSimplePath(P1)
3: i2 := computeSimplePath(P3)
4: N := findPathsWithV alue(i1, a)
5: for all n ∈ N do
6: P := P ∪ getV aluesAfter(i2, n)

7: end for

Algorithm 2 children(a)
Require: a class name, P1 and P3 simple-

paths
Ensure: C set of children of a
1: C := ∅
2: i1 := computeSimplePath(P3)
3: i2 := computeSimplePath(P1)
4: N := findPathsWithV alue(i1, a)
5: for all n ∈ N do
6: C := C ∪ getV aluesBefore(i2, n)

7: end for

Algorithm 3 ancestors(a)
Require: a class name
Ensure: A set of ancestors of a
1: A := ∅
2: P := parents(a)
3: A := P
4: for all p ∈ P do
5: A := A ∪ ancestors(p)

6: end for

Algorithm 4 descendants(a)
Require: a class name
Ensure: D set of descendants of a
1: D := ∅
2: C := children(a)
3: D := C
4: for all c ∈ C do
5: D := D ∪ descendants(c)

6: end for

Algorithm 5 leaves(a)
Require: a class name
Ensure: L set of leaves of a
1: L := ∅
2: C := children(a)
3: if C == ∅ then
4: L := L ∪ {a}
5: else
6: for all c ∈ C do
7: L := L ∪ leaves(c)
8: end for

9: end if

Algorithm 6 properties(a)
Require: a class name, P2 and P4 simple-

paths
Ensure: P list of properties having a as domain
1: P := ∅
2: i1 := computeSimplePath(P4)
3: i2 := computeSimplePath(P2)
4: C := ancestors(a) ∪ a
5: for all c ∈ C do
6: N := findPathsWithV alue(i1, c)
7: for all n ∈ N do
8: P := P ∪ getV aluesBefore(i2, n)
9: end for

10: end for
3 Case Study

In order to clarify how the proposed framework works and how the different query
models can be used, a simple case study in RFID supply chain management is

8

Algorithm 7 keyword −
based search(A1, . . . , An)
Require: a1, . . . , an names to search, P1 simple path
Ensure: C set of classes syntactically similar to

a1, . . . , an

1: C := ∅
2: i := computeSimplePath(P1)
3: for k = 1 to n do
4: V := lookupV alueLike(ak)
5: for all v ∈ V do
6: if v! = null then
7: n := findPathsWithV alue(i, v)
8: if n! = ∅ then
9: C := C ∪ {lookupCode(v)}
10: end if
11: else
12: n := findPathsWithV alueLike(i, v)
13: if n! = ∅ then
14: C := C ∪ {v}
15: end if
16: end if
17: end for

18: end for

Algorithm 8 entity −
based search(a1, . . . , an)
Require: a1, . . . , an classes names, P5

and P8 simple paths
Ensure: Ins list of individuals instance

of the intersection of a1, . . . , an

1: Ins := ∅
2: i1 := computeSimplePath(P8)
3: i2 := computeSimplePath(P5)
4: for 1 = 1 to n do
5: Ci := descendants(ai) ∪ {ai}
6: for all c ∈ Ci do
7: N :=

findPathsWithV alue(i1, c)
8: for all n ∈ N do
9: Insi := Insi ∪

getV aluesBefore(i2, n)
10: end for
11: end for
12: end for

13: Ins := Ins1 ∩ . . . ∩ Insn

considered, where each RFID tag stores a compressed semantic annotation of
the product/stock it is attached to. In [6], backward-compatible extensions of
EPCglobal RFID tag data structure were devised to accommodate an RDF
product description, that could be read by means of standard RFID reader-tag
air interface protocol. However, the case study concerns semantic-based queries
upon KB in compressed COX format at a logical level, thus it can be applied to
any physical data storage model.

Let us consider a large distribution warehouse, receiving several kinds of
products manufacturers. A truck fleet is used to deliver products toward sale
points. Each truck is endowed with a mobile computing device with embed-
ded semantic-enabled RFID reader and on-board query processing capabilities.
When a product is loaded into the truck storage compartment, the reader ex-
tracts the compressed annotation from the RFID tag of the product, and queries
it in order to check: (i) if the product type is compatible with those the truck
is allowed to transport and (ii) if characteristics of the storage compartment are
adequate for the product (e.g., lighting, humidity, temperature and any spe-
cial storage or security equipments). Any incompatibility would likely indicate
an error in truck assignment or product routing within the warehouse, hence it
must be discovered immediately, through on-the-fly semantic query processing.

A stock S of Cavendish bananas is loaded on a truck T , which is allowed to
transport fruit. Storage compartment of T provides no thermostat, hence it can
only keep products at room temperature. S has an RFID tag with the compressed
semantically annotated product description, expressed w.r.t. a suitable product
ontology. Let us suppose that the product annotation coincides with Figure
1 and that the following assertions are in the reference ontology; Notation3
(http://www.w3.org/DesignIssues/Notation3.html) is adopted here for reader’s
convenience:

9

Algorithm 9 checkUniversalRestriction(p, f)
Require: p property, f atomic filler, P6, P7 simple-paths
Ensure: return true if the individual contains a ∀p.f restriction, false otherwise
1: i1 := computeSimplePath(P6)
2: i2 := computeSimplePath(P7)
3: D := descendants(f) ∪ {f}
4: N := findPathsWithV alue(i1, p)
5: for all n ∈ N do
6: V := getV aluesAfter(i2, n)
7: for all v ∈ V do
8: if v ∈ D then
9: return true
10: end if
11: end for
12: end for

13: return false

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix o: <http://sisinflab.poliba.it/food.owl#> .

o:Banana rdfs:subClassOf o:Fruit .

o:Uncontrolled_Temperature rdfs:subClassOf o:Temperature .

o:Room_Temperature rdfs:subClassOf o:Uncontrolled_Temperature .

o:Storage_Temperature rdfs:range o:Temperature .

Entity-based and keyword-based search - According to Algorithm 8, the
computing device embedded in the truck runs entity − based search(Fruit) on
the description of S. Cavendish is described as an instance of Banana, which is
subclass of Fruit, hence it is returned. It is useful to point out that a keyword-
based search can support the selection of suitable ontology classes before an
entity-based search.

Path-based search - When known the KB structure and organization, it
is possible to compose more complex queries for instance retrieval. In the above
example, the device embedded in the truck has to check if the product descrip-
tion is compliant with the ∀Storage Temperature.Uncontrolled Temperature
restriction. To do so, Algorithm 9 is executed with p = Storage Temperature
and f = Uncontrolled Temperature. Intervals for simple-paths are computed
first, and the set D of descendants of f is extracted from the TBox. Then the
universal restriction is searched in line 4: if it is found and its filler belongs to
D, the constraint is satisfied and function returns true. Notice that expand-
ing the search for descendants of the filler, makes the check semantic-based
rather than purely syntactic. In the example, checking the individual in Fig-
ure 1 returns a positive answer, because Room Temperature is a subclass of
Uncontrolled Temperature. Other constraints can be verified in a similar fash-
ion; as an optimization, computed intervals for simple-paths can be cached for
reuse during query processing on the same compressed RDF annotation.

10

A partial implementation of the query engine has been performed, including
the primitives in Table 1. Experiments were executed on a notebook with Intel
Core 2 Duo CPU (2.0 GHz clock frequency), 3 GB RAM and Ubuntu 10.04 OS
(Linux 2.6.32 kernel version). Algorithm 9 was tested on a KB with 175 concepts,
11 roles and 15 instances (original OWL size is 114 kB, COX compressed size is
31 kB). Average execution time was 460 ms and main memory usage peak was
1.51 MB. In a further test, 260 findPathsWithValue primitives were executed
with pseudo-random arguments: Figure 2 reports the distribution of times. These
preliminary results suggest that the approach is viable. Since the implementation
is not complete, comparative tests w.r.t. other query engines cannot be reported
at this time.

Fig. 2. Execution time of findPathsWithValue primitive

4 Related Work

With reference to XML-based languages, several tools supporting efficient query-
ing over compression schemes exist. XGrind [2] can perform (i) exact-match and
prefix-match queries directly on compressed values and (ii) range and partial-
match queries on values decompressed on-the-fly. XPress [3] exploits RAE to im-
prove the path-based queries. XPress query engine converts a label path expres-
sion into a sequence of intervals. Then, by using this sequence, the query executor
checks whether the encoded values of XML tags are in a given interval of the se-
quence or not. XQueC [9] exploits indexing and XML storage strategies since it
is focused on search speed rather than compression efficiency. The above tools ex-
ecute path-based queries expressed in XPath (http://www.w3.org/TR/xpath/),
which allow syntactic match of document elements and are strictly tied to the
XML Schema for the particular document. Therefore, it is not possible to reuse
an existing approach for semantic-based queries.

11

In known strategies for storing and querying RDF annotations, data struc-
tures and optimizations are focused on a database perspective [8]. The Semantic
Web community has generally used traditional database systems [10]. As a con-
sequence, most of the RDF query processing techniques are based on database
query processing and optimization techniques, mainly focused on compression
[11] and indexing approaches [12, 13]. Nevertheless, all these technologies do not
cope with mobile computing issues. An interesting exception is the MQuery
[14] framework for ubiquitous computing. It creates a compressed index of RDF
graphs for improving context-aware retrieval, according to the idea that a mo-
bile user wants to access specific data depending on given situations. The main
drawback w.r.t. the approach proposed here is the limited flexibility and expand-
ability, as MQuery provides a pre-defined query interface for selecting only from
four possible interrogations.

Studies on the above works have suggested main query models expected by
semantic-based applications: (i) full-text search, i.e., keyword or string matching;
(ii) queries based on data structure, i.e., path-based and structure-based queries;
(iii) a combination of them. As a consequence, the presented framework included
both keyword-based search and a set of path-based queries.

5 Conclusion

A framework has been presented for querying knowledge bases expressed in
OWL, serialized in RDF/XML and processed with a homomorphic compression.
It is particularly suitable for scenarios dipped in the Semantic Web of Things vi-
sion. Primitives for querying compressed semantic annotations have been devised
and used to perform interrogations on both the TBox and KB instances. The
implementation of the framework in a software tool is ongoing. It will provide the
needed insight into performance benefits and costs, allowing to evaluate possible
optimizations. Moreover, it will support the development of a semantic-based
query and reasoning engine for compressed KBs, by exploiting basic queries to
implement high-level query languages and inference services commonly used in
the Semantic Web.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Int. J. Semantic
Web Inf. Syst. 5(3) (2009) 1–22

2. Tolani, P., Haritsa, J.: XGRIND: A Query-friendly XML Compressor. In: Proc. of
the 18th Int. Conf. on Data Engineering (ICDE.02), IEEE (2002) 225234

3. Min, J., Park, M., Chung, C.: A compressor for effective archiving, retrieval, and
updating of XML documents. ACM Transactions on Internet Technology 6(3)
(2006) 223–258

4. Scioscia, F., Ruta, M.: Building a Semantic Web of Things: issues and perspec-
tives in information compression. In: Semantic Web Information Management
(SWIM’09). In Proc. of the 3rd IEEE Int. Conf. on Semantic Computing (ICSC
2009), IEEE Computer Society (2009) 589–594

12

5. Witten, I., Neal, R., Cleary, J.: Arithmetic coding for data compression. Commu-
nications of the ACM 30(6) (1987) 520–540

6. Di Noia, T., Di Sciascio, E., Donini, F.M., Ruta, M., Scioscia, F., Tinelli, E.:
Semantic-based Bluetooth-RFID interaction for advanced resource discovery in
pervasive contexts. Int. Jour. on Semantic Web and Information Systems 4(1)
(2008) 50–74

7. Ruta, M., Zacheo, G., Grieco, L.A., Di Noia, T., Boggia, G., Tinelli, E., Camarda,
P., Di Sciascio, E.: Semantic-based Resource Discovery, Composition and Substi-
tution in IEEE 802.11 Mobile Ad Hoc Networks. Wireless Networks 16(5) (2010)
1223–1251

8. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes
for the Semantic Web. In: The 12th Int. Conf. on World Wide Web, ACM (2003)
544–555

9. Skibiski, P., Swacha, J.: Combining Efficient XML Compression with Query
Processing. In: Advances in Databases and Information Systems. Volume 4690.
Springer Berlin / Heidelberg (2007) 330–342

10. Sakr, S., Al-Naymat, G.: Relational processing of RDF queries: a survey. SIGMOD
Rec. 38 (June 2010) 23–28

11. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix Bit loaded: a scalable
lightweight join query processor for RDF data. In: The 19th Int. Conf. on World
Wide Web, ACM (2010) 41–50

12. Delbru, R., Toupikov, N., Catasta, M., Tummarello, G.: A node indexing scheme
for web entity retrieval. In: The Semantic Web: Research and Applications. Volume
6089. (2010) 240–256

13. Zhang, S., Yang, J., Jin, W.: SAPPER: Subgraph Indexing and Approximate
Matching in Large Graphs. Proc. of the VLDB Endowment 3(1) (2010) 1185–1194

14. Zhang, Y., Zhang, N., Tang, J., Rao, J., Tang, W.: Mquery: Fast graph query via
semantic indexing for mobile context. In: The 2010 IEEE/WIC/ACM Int. Conf. on
Web Intelligence and Intelligent Agent Technology - Volume 01, IEEE Computer
Society (2010) 508–515

