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ABSTRACT
The World Wide Web is moving from a Web of hyper-linked
Documents to a Web of linked Data. Thanks to the Seman-
tic Web spread and to the more recent Linked Open Data

(LOD) initiative, a vast amount of RDF data have been pub-
lished in freely accessible datasets. These datasets are con-
nected with each other to form the so called Linked Open

Data cloud. As of today, there are tons of RDF data avail-
able in the Web of Data, but only few applications really ex-
ploit their potential power. In this paper we show how these
data can successfully be used to develop a recommender sys-
tem (RS) that relies exclusively on the information encoded
in the Web of Data. We implemented a content-based RS
that leverages the data available within Linked Open Data

datasets (in particular DBpedia, Freebase and LinkedMDB)
in order to recommend movies to the end users. We exten-
sively evaluated the approach and validated the effectiveness
of the algorithms by experimentally measuring their accu-
racy with precision and recall metrics.
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1. INTRODUCTION
With the pervasive spread of published data in the Web

2.0, we entered into an era of information overload : more
information is produced than we can really consume and
process. In order to cope with such a problem, there has
been a growing number of systems that try to support their
users when searching for information. Among them, we
mention a specific family of such systems for information
filtering: recommender systems [20], whose objective is
supporting users to make choices. Currently, state of the art
applications for content-based recommendation mainly (but
not exclusively) exploit the information coming from differ-
ent text sources in order to identify keywords, or patterns
of keywords able to model both the user profile and the re-
sources to be suggested. In this paper we show how datasets
from the Linked Open Data cloud [4] are mature enough and
rich in high quality data to be used as the main informa-
tion source for a complete application that offers the func-
tionalities of a semantic content-based recommender system.
Indeed, although recommender systems leverage well estab-
lished technologies and tools, new challenges arise when they
exploit the huge amount of interlinked data coming from the
Semantic Web.

The main contributions of this paper may be summarized
as follows:

• Creation of a content-based recommender system exploit-
ing exclusively LOD datasets. Our RS is fed by data com-
ing from DBpedia [5], LinkedMDB [12] and Freebase [6].
We propose a vector space model approach to compute
similarities between RDF resources in LOD. In line with the
trends on the social Web 2.0, we allow a binary user rating
(i.e., like – don’t like). We propose and compare several
formulas for recommendation and different approaches for
training the system.
• Evaluation. Our system has been extensively evaluated

both by performance analysis and by standard precision
and recall measures against the MovieLens [14] dataset.
Although the general approach we present here is domain
independent, we selected the movie domain in order to
ease the comparison with other non-LOD systems.

The remainder of the paper is structured as follows: in
Section 2 we detail how we leverage information contained
in Linked Open Data to compute semantic similarities be-
tween resources, then in Section 3 we describe our recom-
mendation algorithm. In Section 4 we evaluate the proposed
approach, while in Section 5 we review relevant related work.
Conclusion and future work close the paper.



2. COMPUTING SIMILARITY IN LOD
DATASETS

Content-based (CB) recommender systems suggest new
items to the user based on a similarity value computed be-
tween the description of items previously selected by the
user and the description of new unknown items. Several ap-
proaches have been proposed in the literature to evaluate
such similarity functions when dealing with keyword-based
information where both the items and the query are usually
represented as weighted vectors of terms. In such a setting,
one of the most popular approaches is the one combining the
term-frequency/inverse-frequency and the cosine similarity
measure. The former is used to assign a score (weight) to
the keywords occurring in the vectors, while the latter eval-
uates the similarity between two items or between the query
and an item [1].

In CB recommender systems, the module in charge of ex-
tracting relevant information from items description and of
representing it as a vector of keywords is the so called Con-
tent Analyzer (CA) [15]. It mainly uses some Natural Lan-
guage Processing techniques to extract/disambiguate/expand
keywords in order to create a model of the item description.
The use of Linked Open Data datasets to retrieve informa-
tion related to an item eases the pre-processing steps per-
formed by the CA since the information is already structured
in an ontological way. Moreover, depending on the dataset,
there is the availability of data related to diverse knowledge
domains. If we consider datasets such as DBpedia or Free-

base, we are able to access to rich linked data referring to a
high variety of topics.

In the following, for the sake of presentation we will refer
to LOD data related to the movie domain in three different
datasets, i.e., DBpedia, Freebase and LinkedMDB. Neverthe-
less, it is worth noticing that the overall approach is domain
and dataset independent and can be adapted to other knowl-
edge domains.

Thanks to their SPARQL endpoints, we can quite easily
extract portions related to the movie domain from Linked

Open Data datasets. We use this information as the base
for our recommender system. Intuitively, we assume that if
two movies share some information (e.g., part of the cast,
the director, the genre, some categories, etc.), then they
are related with each other. Roughly speaking, the more
features two movies have in common, the more they are
similar. In a few words, if we consider for instance DBpedia,
a similarity between two movies (or two resources in general)
can be detected if in the RDF graph:

• they are directly related: this happens for example if a
movie is the sequel of another movie. In DBpedia this state
is handled by the properties dbpedia-owl:subsequentWork
and dbpedia-owl:previousWork.
• they are the subject of two RDF triples having the same

property and the same object, as for example when two
movies have the same director. In the movie domain, we
take into account about 20 properties, such as dbpedia-

owl:starring and dbpedia-owl:director. They have
been automatically extracted via SPARQL queries (see Sec-
tion 4.1). In particular, the property dcterms:subject

relates a resource to its categories. Categories are used
in Wikipedia to organize the entire project, and to help
users to give a structure to the knowledge base, by group-
ing together pages on the same subject. In DBpedia, the

hierarchical structure of the categories is modeled trough
the property skos:broader. We consider also this prop-
erty in our approach. This allows us to catch implicit
relations and hidden information, i.e., information that is
not directly detectable just looking at the nearest neigh-
bors in the RDF graph (cf. the highlighted path in Figure
1).
• they are the object of two RDF triples having the same

property and the same subject.

Figure 1: A sample of an RDF graph related to the
movie domain.

Figure 1 shows a sample of the RDF graph containing prop-
erties and resources coming both from DBpedia and from
LinkedMDB/IMDB.

2.1 VSM for LOD
In order to compute the similarities between movies, we

adapt to a LOD-based setting one of the most popular mod-
els in classic information retrieval: the Vector Space Model
(VSM) [21]. We want to stress here that, among the various
algorithms to compute similarities, such as Support Vector
Machines and other classifiers [2], we selected the VSM in
order to have a good baseline for further developments and
comparisons. In VSM non-binary weights are assigned to in-
dex terms in queries and in documents (represented as sets
of terms), and are used to compute the degree of similarity
between each document in the collection and the query. In
our approach, we semanticized the classical VSM, usually
used for text retrieval, to deal with RDF graphs. In a nut-
shell, we represent the whole RDF graph as a 3-dimensional
matrix where each slice refers to an ontology property and
represents its adjacency matrix. A component (i.e. a cell in
the matrix) is not null if there is a property that relates a
subject (on the rows) to an object (on the columns). Given a
property, each movie is seen as a vector, whose components
refer to the term frequency-inverse document frequency TF-
IDF (or better, in this case, resource frequency-inverse movie
frequency). For a given slice (i.e. a particular property), the
similarity degree between two movies is the correlation be-
tween the two vectors, and it is quantified by the cosine of
the angle between them. All the nodes of the graph are
represented both on the rows and on the columns of the
matrix. A few words need to be spent for the properties dc-
terms:subject and skos:broader which are very popular in
the DBpedia dataset. As also shown in Figure 1, every movie
is related to a category by the property dcterms:subject



Figure 2: Matrix representation of the RDF graph of
Figure 1.

which is in turn related to other categories via skos:broader

organized in a hierarchical structure. To the purpose of
the recommendation, we consider skos:broader as one-step
transitive. We will explain this notion with the aid of a sim-
ple example. Suppose to have the following RDF statements:

dbpedia:Righteous_Kill
dcterms:subject dbpedia:Category:Serial_killer_films .

dbpedia:Category:Serial_killer_films
skos:broader dbpedia:Category:Crime_films .

Starting from dbpedia:Category:Serial_killer_films we
have that dbpedia:Category:Crime_films is at a distance
of one step. Hence, by considering a one-step transitivity,
we have that:

dbpedia:Righteous_Kill
dcterms:subject dbpedia:Category:Crime_films .

is inferred by the original statements.
Looking at the model, we may observe and remember that:

(1) the matrix is very sparse; (2) we consider properties as in-
dependent with each other (there is no rdfs:subPropertyOf

relation); (3) we are interested in discovering the similarities
between movies (or in general between resources of the same
rdf:type and not between each pair of resources). Based on
the above observations, we can decompose the matrix slices
into smaller matrices where each matrix refers to a specific
RDF property, as shown in Figure 2. In other words, for each
matrix, the rows represent somehow the domain of the con-
sidered property, while the columns its range. For a given
property, the components of each row represent the contri-
bution of a resource (i.e. an actor, a director, etc.) to the
corresponding movie. With respect to a selected property p,
a movie m is then represented by a vector containing all the
terms/nodes related to m via p. As for classical Information
Retrieval, the index terms kn,p, that is all the nodes n linked
to a movie by a specific property p, are assumed to be all
mutually independent and are represented as unit vectors of
a t-dimensional space, where t is the total number of index
terms. Referring to Figure 2, the index terms for the starring
property are Brian Dennehy, Al Pacino and Robert De Niro,
while t = 3 is the number of all the actors that are objects
of a triple involving starring. The representation of a movie
mi, according to the property p, is a t-dimensional vector
given by −−→mi,p = (w1,i,p, w2,i,p, ..., wt,i,p), where wn,i,p is a
non-negative and non-binary value representing the weight
associated with a term-movie pair (kn,p,

−−→mi,p). The weights
wn,i,p we adopt in our model are TF-IDF weights. More
precisely, the TF (fn,i,p) is the frequency of the node n, as
the object of an RDF triple having p as property and the node
i as subject (the movie). Actually, this term can be either

0 (if i is not related to n via p) or 1, since two identical
triples can not coexist in an RDF graph. As for classical in-
formation retrieval, the IDF is computed as the logarithm of
the ratio between M , that is the total number of movies in
the collection, and an,p, that is the number of movies that
are linked to the resource n, by means of the predicate p.
As an example, referring to Figure 2, for the starring prop-
erty, and considering n = AlPacino, then aAlPacino,starring

is equal to 2, and it represents the number of movies where
Al Pacino acted. Relying on the model presented above,
each movie can be represented as a t × P matrix, where P
is the total number of selected properties. If we consider a
projection on a property p, each pair of movies, mi and mj ,
are represented as t-dimensional vectors. We evaluate the
degree of similarity between mi and mj with respect to p,
as the correlation between the vectors −−→mi,p and −−−→mj , p. More
precisely we calculate the cosine of the angle between the
two vectors as:

simp(mi,mj) =

∑t
n=1 wn,i,p · wn,j,p√∑t

n=1 w
2
n,i,p ·

√∑t
n=1 w

2
n,j,p

Such a value is the building block of our content-based rec-
ommender system. By means of the computed similarities,
it is possible to ask the system questions like “Which are
the most similar movies to movie mi according to a specific
property p?”, and also “Which are the most similar movies
to movie mi according to the whole knowledge base?”.

The method described so far is general enough and it can
be applied when the similarity has to be found between re-
sources that appear as subjects of RDF triples. When the
resources to be ranked appear as objects of RDF triples, it
is simply a matter of swapping the rows with the columns
in the matrices of Figure 2 and applying again the same
algorithm. Lastly, when two resources are directly related
by some specific properties (as the case of the property db-

pedia:subsequentWork), we simply operate a matrix trans-
formation to handle this case the same way as done so far.
In the following we will see how to combine such similar-
ity values with a user profile to compute a content-based
recommendation.

3. SEMANTIC CONTENT-BASED RECOM-
MENDER SYSTEM

If we want to provide an answer also to questions like
“Which are the most similar movies to movie mi according
to the user profile?” we need to go a step further by rep-
resenting and exploiting the user profile. In our setting, we
model it based on a binary rating such as I like/I don’t like
(as the one adopted by YouTube). Empirical studies on real
uses cases, as the one reported in the official YouTube Blog1,
show that even if users are allowed to rate an item on a five
stars scale, it can happen that they actually either give the
highest grade or do not give feedback at all. Therefore, we
model ratings only on a binary scale. Hence, we model the
profile of the user u as:

profile(u) = {〈mj , vj〉 | vj = 1 if u likes mj ,

vj = −1 otherwise} (1)

1http://youtube-global.blogspot.it/2009/09/
five-stars-dominate-ratings.html



In order to evaluate if a new resource (movie) mi might be
of interest for u – with 〈mi, vi〉 6∈ profile(u) – we need to
combine the similarity values related to each single property
of mi and compute an overall similarity value r̃(u,mi). We
evaluated two different formulas trying to find the one best
performing in terms of precision and recall (see Section 4 for
the results):

r̃(u,mi) =

∑
mj∈profile(u)

vj ·
∑

p αp · simp(mj ,mi)

P

|profile(u)|
(2)

r̃(u,mi) =

∑
mj∈profile(u)

vj ·
∑

p αp · simp(mj ,mi)∑
p αp

|profile(u)|
(3)

where P represents the number of properties we selected
from the datasets we consider (see Section 2.1) and |profile(u)|
is the cardinality of the set profile(u). The formulas take
into account the similarities between the corresponding prop-
erties of the new item mi and mj ∈ profile(u). A weight
αp is assigned to each property representing its worth with
respect to the user profile. The difference between the two
formulas is the normalization factor: in Equation 2 the simi-
larity between mi and mj is divided by P , while in Equation
3 it is divided by the sum of αp coefficients.

3.1 Training the system
The system automatically computes default values for αp

by training the model via a genetic algorithm. We describe
also another approach to automatic extraction of default
weights, based on Amazon. In the evaluation section (cf.
Section 4.2 and Figure 3(a)) we will compare the results
obtained by these approaches.

3.1.1 Training via a Genetic Algorithm
Genetic Algorithms (GA) are adaptive algorithms that

identify a population of solutions by following the paradigm
of evolution and genetics [23]. Extensive research on them
has proven their effectiveness in solving a large range of op-
timization problems, including feature selection and weight-
ing tasks. In GAs a fitness function is applied to evaluate
individuals, and the success of the reproduction of the pop-
ulation varies with the fitness function. In our case, the
fitness function minimizes the misclassification error on the
training data thus improving the precision results. The evo-
lutionary process starts from a population of αp coefficients
that are generated randomly. Then, in each generation, the
fitness function evaluates every possible solution and then
multiple solutions are stochastically chosen from the current
population, recombined and randomly mutated to obtain a
new population. This population is used in the subsequent
iteration. In our tests, we varied the number of iterations to
decide when the algorithm had to terminate. We observed
the quality of the recommendations – measured in terms
of Precision and Recall on the test set – does not improve
significantly if we consider a number of iterations greater
than 100 and a population size greater than 300, while the
computational cost increases drastically. For this reason, we
set the maximum number of iterations equal to 100 and the
population size equal to 300 individuals.

In Section 4 we will discuss the performances of Equa-
tion 2 and Equation 3 in terms of the well-known accuracy
measures Precision and Recall.

3.1.2 Training via Amazon
The Genetic Algorithm above described computes the op-

timum values for the αp coefficients, according to a specific
user profile profile(u). However, in case such profile is not
available – this happens for example when a new user starts
using the application – we use default weights computed via
a statistical analysis on Amazon’s collaborative recommender
system. More in detail, we collected a set of 1000 randomly
selected movies from Amazon and we checked why users that
have bought a moviemi also bought moviemj , analyzing the
first items in the recommendation list. For example, for the
movie Righteous Kill, the first movie suggested by Amazon

is Heat. Then, looking into our semantic graph, we checked
what these two movies have in common. In particular, since
these movies share part of the cast, the genre and some cat-
egories (cf. Figure 1), we assign an initial value equal to 1 to
αstarring, αgenre and αsubject/broader. The main idea behind
this assignment is that a user likes a movie mi, given another
movie mj , because the two movies are similar according to
some properties p1, . . . , pP . More precisely, each time there
is a path that relates two movies with each other via some
property p, a counter associated to p is incremented. We
iterate the process on the training movie set, and then we
normalize the counters to the highest one, to finally obtain
the coefficients αp in the range [0, 1].

3.2 Browsing and Explanation
One of the aspects in favor of content-based recommender

systems compared to those based on collaborative filtering,
is its transparency [15]. Explanations can be computed by
explicitly listing, for each property, the values which are
common between the movies in the user profile and the sug-
gested one. Computing an explanation for a recommended
item is crucial for the acceptance of a recommender system
[14]. To this aim, the interlinked and structured nature of
LOD datasets plays an important role since it eases the com-
putation of a human-understandable explanation because it
allows the user to explore [27] the results space following
different dimensions (each one corresponding to an ontolog-
ical property). By adopting a faceted browser (see [3] as
an example) the user may discover new information on re-
turned movies or even new unknown movies related to the
suggested ones.

4. EVALUATION
In order to assess the performance and the quality of our

recommendation algorithm, we analyzed the amount of time
required to compute the rankings for the whole dataset we
extracted from DBpedia, Freebase and LinkedMDB and we
conducted several precision and recall experiments to eval-
uate the proposed recommendations.

4.1 Dataset and performance analysis
In the current DBpedia release (3.7) there are 60,194 movies.

3,524,733 triples have a movie as subject, almost two-thirds
of them (2,288,968) link a movie to a resource (e.g., an ac-
tor URI, a director URI, and not a literal). More precisely,
there are 575 distinct properties of such type whose domain
is a movie. In our analysis we considered dcterms:subject,



skos:broader and the properties belonging to the DBpe-

dia Ontology2. In particular, we consider dcterms:subject
and skos:broader very relevant for our approach since they
encode most of the ontological knowledge in the DBpedia

dataset. This will be more evident in Section 4.2. More-
over, in DBpedia we use only the properties belonging to the
DBpedia Ontology, because they allow users to deal with
high-quality, clean and well-structured data. A list of all
the properties related to the Film class in the DBpedia ontol-
ogy is available at http://mappings.dbpedia.org/server/
ontology/classes/Film. They can be easily retrieved via
the following SPARQL query:

SELECT ?p, COUNT(?p) AS ?n WHERE {
?s a dbpedia-owl:Film .
?s ?p ?o .
FILTER(regex(?p, "^http://dbpedia.org/ontology/"))

}
GROUP BY ?p
ORDER BY DESC(?n)

In the movie dataset extraction, we considered all these
properties, except for the properties dbpedia-owl:thumbnail
and dbpedia-owl:wikiPageExternalLink, since they clearly
do not give any useful semantic contribution to our computa-
tion. Starting from the set of resources in DBpedia represent-
ing movies, we extracted related information from Linked-

MDB and Freebase by following the owl:sameAs property.
Summing up the most relevant characteristics of the movie
subgraph extracted from DBpedia, Freebase and LinkedMDB,
there are 181,914 triples involving 53,840 distinct actors,
54,504 triples referring to 18,149 different directors; 68,393
triples concerning 29,352 distinct writers; 368,675 triples re-
lated to categories. We collected a total of 27,035 categories
from DBpedia, 667 genres from Freebase and 26 genres from
LinkedMDB.

After the movie subgraph has been extracted, we have
measured the runtime performance of the ranking process
executed by our algorithm. The program is written in Java
and makes extensive use of multi-threading, with 150 con-
current threads. The computation time for the recommen-
dation of the whole extracted dataset lasted 24 minutes and
13 seconds on a dedicated server machine with 4 Xeon quad-
core 2.93GHz processors and 32GB RAM. Being an exten-
sion of the classical Vector Space Model, our approach has
the same time complexity: it is linear in the number of doc-
uments (i.e., movies) in the collection. Moreover, several
optimizations based on heuristics can be applied straight
for speeding up the computation [16].

4.2 Recommender System evaluation
In order to evaluate the quality of our algorithm, we per-

formed the evaluation on MovieLens [14], the historical dataset
for movie recommender systems. The 1M dataset contains
100,000,029 anonymous ratings from 6,040 users on 3,952
movies. MovieLens datasets are mainly aimed at evaluating
collaborative recommender systems in the movie domain.
Since our approach is based on a content-based recommen-
dation, in order to use such datasets to test the perfor-
mances of our algorithms, we linked resources represented
in MovieLens to DBpedia ones3. We extracted the value of

2http://wiki.dbpedia.org/Downloads37#
ontologyinfoboxproperties
3It was not necessary to map also movies in LinkedMDB and

rdfs:label property from all the movies in DBpedia, to-
gether with the year of production, by using the following
SPARQL query:

SELECT DISTINCT ?movie ?label ?year WHERE {
?movie rdf:type dbpedia-owl:Film.
?movie rdfs:label ?label.
?movie dcterms:subject ?cat .
?cat rdfs:label ?year .
FILTER langMatches(lang(?label), "EN") .
FILTER regex(?year, "^[0-9]{4} film", "i")

}
ORDER BY ?label

Then, we performed a one-to-one mapping with the movies
in MovieLens by using the Levenshtein distance and check-
ing the year of production. We found that 298 out of 3,952
(7.54%) movies in MovieLens have no correspondence DBpe-

dia. After this automatic check we manually double-checked
the results and we found that 69 out of 3,654 mappings
(1.89%) were not correct and we manually fixed them. A
dump of the mapping is available at the address: http://

sisinflab.poliba.it/mapping-movielens-dbpedia-1M.zip.
Before starting our evaluation, we had to align also the user
profiles in MovieLens with the user profile in Equation (1).
Indeed, in MovieLens user u expresses a rate on a movie mj

based on a five-valued scale: r(u,mj) ∈ [1, . . . , 5], where a
vote of 1 indicates an Awful movie, while a vote of 5 clas-
sifies a movie as Must See. In order to map the five stars
rating to a binary rating, we computed for each user u in the
dataset their average rating r̂(u) and we built user profile as

profile(u) = {〈mj , vj〉 | vj = 1 if r(u,mj) ≥ r̂(u),
vj = −1 otherwise}

The same consideration holds when we evaluate the rec-
ommendation algorithm in terms of precision and recall. In
recommender systems, precision and recall are defined re-
spectively as: precision: fraction of the top-N recommended
items that are relevant to u; recall : fraction of the relevant
items that are recommended to u. In our experiments, since
we focus on the test set to find the actual relevant items
of the target user, the top-N list we compute contains the
items that are in the target user’s test set only. The test
set we extracted from the 1M MovieLens dataset contains
20 rates per user. For this reason, we computed the Preci-
sion@N and Recall@N, varying N in the interval [1, . . . , 20].
More precisely, our experiments of Precision and Recall aim
to evaluate the following different aspects: (i) comparing
Equation 2 and Equation 3 to select the best performing
one (Table 1); (ii) comparing different algorithms used for
the selection of the αp coefficients (Figure 3(a)); (iii) analyz-
ing how choosing specific sets of properties and data affects
the quality of results (Figure 3(b)); (iv) validating our ap-
proach by comparison with keyword-based and collaborative
recommender systems (Figure 3(c)). To ensure the results
are not biased by some user profiles, we executed a 5-fold
cross-validation [20].

From Table 1 we see that Equation 2 and Equation 3 have
comparable performance and Equation 2 performs slightly
better than the other one. Hence, we continued our evalua-
tion by considering only this one.

Freebase since they are linked to DBpedia via owl:sameAs
statements.



(a)

(b)

(c)

Figure 3: Precision and Recall curves obtained: (a)
with different algorithms for computing the αp coef-
ficients; (b) considering different sets of LOD proper-
ties; (c) comparing our system with other content-
based RSs.

Equation 2 Equation 3
N Precision Recall Precision Recall
1 0,834 0,060 0,831 0,060
3 0,806 0,174 0,802 0,173
5 0,788 0,282 0,786 0,282
10 0,757 0,540 0,751 0,537
15 0,731 0,778 0,727 0,777
20 0,707 1,000 0,704 1,000

Table 1: Precision and Recall evaluation for Equa-
tion 2 and Equation 3.

Figure 3(a) shows the Precision and Recall curves ob-
tained considering different approaches for the computation
of the αp coefficients. In particular, for the curve identified
by the square markers, the weights αp computed via the ge-
netic algorithm are used, as detailed in Section 3.1.1. The
green curve with diamond markers refers to the coefficients
calculated via statistical analysis on Amazon recommender
system, as described in Section 3.1.2. Then, the last two
curves show the results of Precision and Recall when the
coefficients are randomly selected and when they are all set
equal to 1, respectively. For the violet curve with triangle
markers, we ran the random selection 60,000 times (about
10 times the number of users in the MovieLens dataset) and
then we computed the mean values. For an infinite number
of trials, the curve obtained with random selection should
be identical to the curve where the coefficients are all equals.
This is the reason why the two curves in the figure are very
similar. It is evident from Figure 3(a) that the genetic algo-
rithm allows the system to achieve the best results in terms
of Precision. For this reason, in the following evaluation we
rely on the αp coefficients computed by this algorithm.

The following part of our evaluation aims to highlight the
importance of the ontological information contained within
Linked Open Data and in particular the categories available
in DBpedia. To this purpose, we computed the recommenda-
tion lists for users in the test set (via Equation 2), consider-
ing specific groups of properties. The goal is to understand
how these properties affect the quality of the recommen-
dation. The results of Precision and Recall are shown in
Figure 3(b). The red curve with square markers considers
all the properties we extracted from the DBpedia ontology
and the genres extracted from LinkedMDB and Freebase. In
this curve, also the categories not directly related to a movie
are considered – i.e., considering skos:broader as one-step
transitive (see the highlighted path in Figure 1). The best
results are achieved in this case. The curve subject1broader
does not consider information coming from Freebase and
LinkedMDB. We may see how the results get worse thus show-
ing that information coming from different datasets is mean-
ingful and does not add noise to data. We also evaluated
the system by considering different “degree of transitivity”
for skos:broader (see the curves subject2broader and sub-
ject3broader). From Figure 3(b) it is possible to observe that
in these cases the results get worse and worse. This means
that more generic categories are not so meaningful and add
noise to the information. It is interesting to note that the
IDF does not mitigate the importance of these categories
within the data. We expected that the more generic a cat-
egory is, the more frequently it appears. Finally, the cyan
curve with cross markers does not consider any DBpedia cat-
egory nor IMDB/Freebase genre, but only the properties in



the DBpedia ontology. We may say that the information
contained in the categories one step far from a movie is very
important for the quality of the recommendation. We stress
that such type of information can be found only in onto-
logical datasets as the ones belonging to Linked Open Data

cloud.
In the last part of the evaluation of our system, we focus

on the comparison with a related approach based on DBpedia

and with some keyword-based approaches (see Figure 3(c)).
The curve with square markers refers to the algorithm used
in our system, where the αp coefficients are obtained via
a genetic algorithm as detailed in 3.1.1 and all the proper-
ties within the semantic graph are considered. In particular,
skos:broader is considered as one-step transitive. All the
other curves refer to related work about some content-based
recommender systems. The blue curve with diamond mark-
ers refers to LDSD (Linked Data Semantic Distance) [18],
a measure applied to build a music RS. We re-implemented
the algorithms proposed by the authors and made a compar-
ison with our approach. The graph shows that our recom-
mender system performs better in the movie domain. The
curve represented by triangle markers refers to the work by
Debnath et al. [7]. Here, the authors leverage structured
data coming from IMDB to produce a content-based recom-
mendation. They estimate the values of the weights for the
properties involved in the recommendation by a set of linear
regression equations obtained from a social network graph.
Lastly, the curve indicated with circle markers refers to a
work by Wartena et al. [26], and it can be seen as a base-
line approach to CB recommendation. The authors augment
the MovieLens dataset with IMDB textual description about
movies. Then, keywords are extracted from text and movies
are described by bags of words. The main drawback of this
approach is that the informative sources considered are not
structured. This is the reason why all the other approaches
we compare, being based on structured data, obtain bet-
ter accuracy results measured by Precision/Recall. Thanks
to the ontological information within the Linked Open Data

datasets we exploit, we are able to improve the quality of a
standard content-based system based on structured data.

5. RELATED WORK
At the best of our knowledge, our system is one of the very

first initiatives that leverage Linked Open Data to build rec-
ommender systems. A lot of systems have been proposed in
literature that address the problem of recommendations, but
there are very few approaches that exploit the data within
LOD to provide recommendations. In the following we give a
brief overview of semantic-based approaches to recommen-
dation. Similarly to our approach, in [28] the authors rely
on structured features to show their superiority with respect
to a pure term-based similarity computation. However, at
the time of that work, LOD was not available yet. dbrec
[17] is a music content-based recommender system leverag-
ing the DBpedia dataset. The approach is link-based, i.e.
the “semantics” of relations is not exploited since each re-
lation has the same importance, and it does not take into
account the links hierarchy, expressed in DBpedia through
the DCTERMS and SKOS vocabulary. However, the properties
within these vocabularies have proven to be fundamental
in our evaluation (cf. Figure 3(b)). Szomszor et al. [24]
investigate the use of folksonomies to generate tag-clouds
that can be used to build better user profiles to enhance the

movie recommendation. They use an ontology to integrate
both IMDB and Netflix data. However, they compute sim-
ilarities among movies taking into account just similarities
between movie-tags and keywords in the tag-cloud, without
considering other information like actors, directors, writers
as we do here. Filmtrust [11] integrates Semantic Web-
based social networking into a movie recommender system.
Trust has been encoded using the FOAF Trust Module and
is exploited to provide predictive movie recommendation. It
uses a collaborative filtering approach as many other recom-
mender systems, as MovieLens [14], Recommendz [10] and
Film-Consei [19]. Our RDF graph representation as a three-
dimensional tensor has been inspired by [9]. Here, the au-
thors extend the paradigm of two-dimensional graph repre-
sentation to obtain information on resources and predicates
of the analyzed graph. In the pre-processing phase they just
prune dominant predicates, while we automatically extract,
through SPARQL queries, relevant ones according to the cho-
sen domain. Moreover, in [9] the authors consider only the
objects of the RDF triples, while we look also at subject of
the statements to compute similarities. Tous and Delgado
[25] use the vector space model to compute similarities be-
tween entities for ontology alignment, however with their
approach it is possible to handle only a subset of the cases
we consider, specifically only the case where resources are
directly linked. Eidon et al. [8] represent each concept in an
RDF graph as a vector containing non-zero weights, but they
take into account only the distance from concepts and the
sub-class relation to compute such weights. Heitmann and
Hayes [13] propose to leverage Linked Open Data to build
open recommender systems. The purpose is to mitigate the
new-user, new-item and sparsity problems of collaborative
recommender systems. As for [17], the domain is the music.
Differently from our approach, they do not exploit any on-
tological information of DBpedia. Moreover, being based on
collaborative-filtering, their aim is to fill a user-item matrix
with binary values, while we define P vector spaces – P is
the number of the properties considered in the recommen-
dation (cf. Section 2.1) – to compute the similarity between
resources in order to build a content-based recommender. In
[22] the authors propose to use Linked Open Data for edu-
cational purposes. The presented system is a Resource List
Management System built on LOD principles. However, the
recommender part is just a vision.

6. CONCLUSION AND FUTURE WORK
The usage of Linked Open Data datasets poses new chal-

lenges and issues in the development of next generation rec-
ommender system and, more generally, complex Web appli-
cations. In this paper we have presented a content-based
recommender system that leverages the knowledge encoded
in semantic datasets of the Linked Open Data project. In
particular, since we focused on the movie domain, we ex-
ploited the data within DBpedia, Freebase and LinkedMDB to
collect information about movies, actors, directors, genres,
categories, etc.. The innovative aspect of the research is the
usage of Linked Open Data as the only background knowl-
edge of a movie recommender system, and the adaptation
of a popular ranking measure in Information Retrieval like
the Vector Space Model to semantic networks. Currently,
we are working on testing/integrating other approaches for
the recommendation (e.g., Support Vector Machine) applied
to Linked Open Data. We will further expand the collec-



tion of LOD datasets used in the recommendation, and we
will extend the whole approach to other domains, to even-
tually propose a cross-domain recommendation leveraging
LOD datasets. Moreover we want to combine a LOD-based
recommendation with a collaborative-filtering approach in
order to improve the performances of our system. Finally,
we are evaluating how LOD-based recommender systems may
mitigate common issues related to Limited Content Analy-
sis, cold-start and sparsity of data.
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