
Common Subsumbers in RDF

Simona Colucci1, Francesco M. Donini1, and Eugenio Di Sciascio2

1: DISUCOM, Università della Tuscia, Viterbo, Italy
2: DEI, Politecnico di Bari, Bari, Italy

Abstract. Since their definition in 1992, Least Common Subsumers
(LCSs) have been identified as services supporting learning by examples.
Nowadays, the Web of Data offers a hypothetically unlimited dataset
of interlinked and machine-understandable examples modeled as RDF
resources. Such an open and continuously evolving information source
is then really worth investigation to learn significant facts. In order to
support such a process, in this paper we give up to the subsumption
minimality requirement of LCSs to meet the peculiarities of the dataset
at hand and define Common Subsumers (CSs). We also propose an any-
time algorithm to find CSs of pairs of RDF resources, according to a
selection of such resources, which ensures computability.

1 Introduction

Since its definition and identification as fundamental layer over which building
the Semantic Web [4], the Web of Data [22] has led to the availability of a huge
amount of perfectly interconnected and machine-understandable data, modeled
as RDF resources, usually addressed as Linked (Open) Data (LOD). Such an
open and free (in most cases) dataset asks for new sorts of information manage-
ment, which could further support the realization the Semantic Web principles.

One of the most challenging issues in RDF resources management is the
identification of subsets of resources to some extent related to a common infor-
mative content. Finding commonalities in the information conveyed by different
RDF descriptions may in fact turn out to be useful in several Semantic Web-
related tasks. Intuitively, clustering of Web resources is one of these tasks: the
need for restricting the search field in a space as wide as the Web has generated
several research efforts in the literature.

Since 2001, learning from RDF graphs has been investigated [12] with the
aim to cluster resources by incrementally constructing new concepts that par-
tially describe all resources of interest, and to classify them according to sub-
sumption. Fanizzi et al. [13] perform ontology clustering according to a metric-
based approach, with reference to representation languages (namely, OWL-DL1)
different from RDF; lists of so-called medoid are returned as clustering result.

Part of the literature is specifically devoted to the application of clustering
algorithms to Semantic Web data. Grimnes et al. [16] evaluate, by applying both

1 http://www.w3.org/TR/2004/REC-owl-guide-20040210/

supervised and unsupervised metrics, different methods for extracting instances
from a large RDF graph and computing the distance between such instances.
The evaluation shows how the behavior of extraction methods and similarity
metric strictly depends on the data being clustered, suggesting the need for
data-centric flexible solutions.

Mahmoud et al. [20] investigate on clustering for data integration from large
numbers of structured data sources, suggesting the need for a pay-as-you-go
approach [19] which adopts an initial data integration system (resulting from
some fully automatic approximate data integration technique), refined during
system use. The approach by Mahmoud et al. clusters data schema into domains
only according to attribute names and manages uncertainty in assignment using
a probabilistic model.

Also the simpler problem of clustering web pages has met the interest of
researchers: a Fuzzy Logic-based representation for HTML document using Self-
Organizing Maps has been proposed for clustering [15]. Zeng et al. [24] deal
with the re-formalization of the clustering problem in terms of phrase ranking
to produce candidate cluster names for organizing web search results.

Proposals taking somehow into account semantics conveyed in resources de-
scriptions while performing clustering of search results have been presented. In
particular, Lawrynowicz [18] proposes a method to cluster the results of con-
junctive queries submitted to knowledge bases represented in the Web Ontology
Language (OWL). Syntactic approaches show some limits in aggregating clus-
tering results when the values instantiating a grouping criterion are all equal
or are almost all different. d’Amato et al. . [10] overcome such limits by deduc-
tively grouping answers according to the subsumption hierarchy of the underly-
ing knowledge base.

Far from being exhaustive, the above state of the art shows the deep inter-
est for clustering (especially of Web content) and underlines how most of the
clustering approaches introduced so far adopt induction to identify clusters ac-
cording to some—sometimes semantic-based—distance between elements in the
same cluster. Our approach instead supports the inference of such clusters, and
may provide a description of the informative content associated to the common
features of resources belonging to the same cluster.

In particular, we define Common Subsumers of pairs of RDF resources, in
analogy to the Least Common Subsumer(LCS) service, well known in Description
Logics. Since its proposal in 1992 [5], learning from examples was identified as
one of the most important application fields for LCS computation.

We take the same assumption and adapt the original definition to the set of
examples we aim at learning from: the Web of Data. The hypothetically unlim-
ited size of the investigated dataset motivates the choice of giving up to the sub-
sumption minimality requirement typical of LCSs and revert to Common Sub-
sumers. Motivated by the chance to compute even rough Common Subsumers,
still useful for learning in the Web of Data, we propose an anytime algorithm
computing Common Subsumers of pairs of RDF resources. The algorithm may
work as basis for finding commonalities in collections of RDF resources.

The paper is organized as follows: in the next section, we shortly recall re-
lated work on common subsumers computation and discuss peculiarities of RDF
which make it different from other Web languages in terms of such an inference
process. Section 3 provides a proof-theoretic definition of Common Subsumers
in RDF, whose properties are shown in Section 4. The anytime algorithm com-
puting Common Subsumers is given in Section 5, before closing the paper.

2 Common Issues

Coherently with the initial motivation of supporting inductive learning in the DL
LS [5], several algorithms have been developed for computing LCS in different
DLs, such as CoreClassic [6], ALN [7], Classic [14].

The idea of reverting to common subsumers which are not “least” has been
already investigated to cope with practical applications [2].

The main issues of the problem we investigate here are on the one hand
selecting a portion of the knowledge domain in order to ensure computability
and, on the other hand, the peculiarities of the language in which resources are
modeled: RDF. Aimed at learning from the Web of Data, our approach needs in
fact to cope with RDF/RDF-S. Nevertheless, the RDF/RDF-S semantics is
not trivial to be investigated, and even less trivial is determining its relationship
with DLs [11] and/or other Web languages [21] in which the problem of finding
(least or not) common subsumers has been defined and studied. For this rea-
son, we provide in the following section an RDF-specific definition of Common
Subsumers and clarify the choices about the adopted semantics.

3 Common Subsumers in RDF

We recall that in the Description Logics literature [5, 1], a concept L is a Least
Common Subsumer of two concepts C1 and C2 if: (i) L subsumes both C1 and
C2 (written as C1 v L, C2 v L) and moreover, (ii) L is a v-minimal concept
with such property, that is, for every concept D such that both C1 v D and
C2 v D hold, L v D holds too.

We adopt the semantics based on entailment for RDF, that is, the meaning
of a set of triples T is the set of triples (theorems) one can derive from T by using
RDF-entailment rules. The RDF-entailment rules we consider are the 18 rules
and the axiomatic triples of the official document regarding RDF semantics [17],
modified according to ter Horst [23] as follows: In his paper, ter Horst proves that
the original rules for entailment in RDF are incomplete, and that completeness
is regained if (i) blank 2 nodes are allowed to stand as predicates in triples (called
generalized RDF triples), and (ii) Rule rdfs7 is changed accordingly—namely,
it can derive triples whose predicate is a blank node. In the following, when

2 Recall that every blank node corresponds to an existentially quantified variable. A
blank node without a name is denoted by [], while named blank nodes are prefixed
by :, e.g., :xxx

we talk about RDF triples and RDF entailment, we always assume that the
adjustments proposed by ter Horst have been made. To correctly embed RDF
triples in text we use the notation <<a p b>> to mean “a p b .”

Clearly, the meaning of a resource r changes depending on which triples r
is involved in, since different sets of triples derive (in general) different new
triples. Hence, we always attach to a resource r the set of triples Tr we consider
significant for its meaning and define such a pair as rooted-graph of r.

Definition 1 (Rooted Graph(r-graph)). Let TWr be the set of all triples
with subject r in the Web. A Rooted Graph(r-graph) is a pair 〈r, Tr〉, where

1. r is either the URI of an RDF resource, or a blank node
2. Tr = {t | t = <<r p c>>} is a subset of TWr

Observe that we implicitly define a set of resources, namely, all resources appear-
ing in some relevant triple of some resource. The idea is to cut out a relevant
portion of the Semantic Web, where the resources on the “frontier” of such a
portion have no relevant triples—i.e., they are treated as literals3, even when
they are not. In the r-graph 〈r, ∅〉, r has no “meaning” other than a generic
resource, for which, e.g., <<r rdf:type rdfs:Resource>> is always entailed
(Rule rdfs4 in the official document about RDF entailment [17]).

We think that it is not realistic to assume that all relevant triples are known
at once, and in advance: the usual way in which sets of triples are constructed,
is that triples are discovered one at a time, while exploring the Web. In this
setting, the question a crawler has to answer while surfing the Web is: “Is this
triple t I have just found relevant for r or not?” The answer is provided by the
characteristic function of Tr, namely, σTr

: TWr → {false, true}, that we will
use to determine the set Tr of triples relevant for r (see Algorithm 2 for our
current computation).

We clarify that when deciding the entailment of a triple involving r as subject,
also triples not involving r at all must be considered. For example, let 〈r, Tr〉,
〈a, Ta〉 〈b, Tb〉 be three r-graphs, where:

Tr = {<<r rdf:type a>>}
Ta = {<<a rdfs:SubClassOf b>>}
Tb = ∅

Observe that the triple <<r rdf:type b>>, which enriches the “meaning” of
r, is not entailed by Tr alone, while it is entailed by Tr ∪ Ta (Rule rdfs9 [17]).
Hence, we assume that entailment is always computed with respect to the union
of all sets of relevant triples. We call T such a union set. We are now ready to
give our definition of Common Subsumer of two resources.

Definition 2 (Common Subsumer). Let 〈a, Ta〉, 〈b, Tb〉 be two r-graphs and
x, w, y be blank nodes. If 〈a, Ta〉 = 〈b, Tb〉, then 〈a, Ta〉 is a Common Subsumer
of 〈a, Ta〉, 〈b, Tb〉. Otherwise, if Ta = ∅ or Tb = ∅, the pair 〈x, ∅〉 is a Common

3 Recall that literals can never appear as subjects of triples.

Subsumer of 〈a, Ta〉, 〈b, Tb〉. Otherwise, a pair 〈x, T 〉 is a Common Subsumer of
〈a, Ta〉, 〈b, Tb〉 iff:
∃t = <<x w y>> such that (T entails t)

⇒ (1)

∃t1 = <<a p c>>, t2 = <<b q d>> such that (T entails t1) ∧ (T entails t2)
where Ta ⊆ T, Tb ⊆ T and 〈w, T 〉 is a Common Subsumer of 〈p, Tp〉 and 〈q, Tq〉,
and 〈y, T 〉 is a Common Subsumer of 〈c, Tc〉 and 〈d, Td〉.

Observe that if we used “⇔” in (2) instead of “⇒”, we would define Least
Common Subsubers in RDF. However, we are more interested here in Common
Subsumers, since they are easier to compute, while being still useful enough for
our applications. Observe also that the reference to the relevant triples of each
resource is crucial for defining the Common Subsumer; in order not to explore
the entire Semantic Web, we will restrict the relevant triples either to some
specific dataset such as DBPedia, or to triples “near” the initial resources—as a
distance in the RDF-graph—or both.

We now provide an intuition of our definition through an example.

Example 1. Suppose that the following common prefixes have been defined:

@prefix dbpedia: <http://dbpedia.org/resource/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dbpedia-owl: <http://dbpedia.org/ontology/> .

@prefix dbpprop: <http://dbpedia.org/property/> .

Then, consider the resource dbpedia:Bicycle Thieves (a renowned Italian neo-
realist movie), along with (what we decide to be) its relevant triples TBT (written
in Turtle [3] notation):

dbpedia:Bicycle_Thieves

rdf:type dbpedia-owl:Film ;

dbpprop:director dbpedia:Vittorio_De_Sica ;

dbpprop:language dbpedia:Italian_language .

and the resource dbpedia:The Hawks and the Sparrows (a post-neorealist Ital-
ian movie), along with its relevant triples TUU :

dbpedia:The_Hawks_and_the_Sparrows

rdf:type dbpedia-owl:Film ;

dbpprop:director dbpedia:Pier_Paolo_Pasolini ;

dbpprop:language dbpedia:Italian_language .

To make the example easy to follow, we consider that there are no relevant triples
for all other resources—i.e., rdf:type, dbpedia-owl:Film, dbpprop:director,
etc.—involved in the above triples. This corresponds to choose only triples whose
subject is either dbpedia:Bicycle Thieves or dbpedia:The Hawks and the-

Sparrows.
An intuitive Common Subsumer of 〈dbpedia:Bicycle Thieves, TBT 〉 and

〈dbpedia:The Hawks and the Sparrows, TUU 〉 is 〈 :cs1, T〉, where :cs1 is a
blank node and T contains, in addition to TBT and TUU , also the new triples

_:cs1

rdf:type dbpedia-owl:Film ;

dbpprop:language dbpedia:Italian_language .

A more informative Common Subsumer—the one that would be computed by
our algorithm in Sect. 5—is 〈 :cs2, T〉 where T contains, in addition to the
previous example, also a triple referring to some director:

_:cs2

rdf:type dbpedia-owl:Film ;

dbpprop:director _:cs3 ;

dbpprop:language dbpedia:Italian_language .

where 〈 :cs3, ∅〉 is a Common Subsumer of 〈dbpedia:Vittorio De Sica, ∅〉 and
〈dbpedia:Pier Paolo Pasolini, ∅〉. Observe that since we did not consider any
triple regarding the two directors—e.g., they were both italian—we cannot add
to T :cs3 the triple

<< :cs3 dbpprop:director dbpedia:Italian director>>

This clearly exemplifies the tradeoff between, on one hand, how large is the
portion of the linked data we want to consider, and on the other hand, how many
computational resources we are willing to spend. Probably the most intuitive
enlargement process is the one based on (RDF graph) distance: in that case,
considering relevant also the triples whose subject has distance 1,2,. . . from the
initial resources, one obtains progressively more accurate Common Subsumers
at the price of a progressively heavier computation.

For sake of completeness, we note that one of the least informative Com-
mon Subsumers is 〈 :cs4, TBT ∪ TUU 〉, where :cs4 is a(nother) blank node.
(End of example).

In general, a Common Subsumer of a, b is a blank node, except for the case
a = b, in which the most informative Common Subsumer is the resource itself—
see Idempotency in the next section. A Common Subsumer is a blank node
because RDF can only express—by means of triples—necessary conditions for
identifying a resource. For example, even if we state for some resource r exactly
the same triples of dbpedia:Bicycle Thieves, this does not allow us to derive
in RDF that r = dbpedia:Bicycle Thieves—one can verify that equality of
two resources is never the consequence of RDF-entailment Rules.

4 Properties of RDF Common Subsumers

We now explore some properties of Common Subsumers that already hold in
Description Logics, and which we prove to hold also—suitably changed—for our
definition of Common Subsumers in RDF, namely: Idempotency, Commutativ-
ity, and Associativity.

Idempotency. Clearly, a Common Subsumer of 〈a, Ta〉 and 〈a, Ta〉 is 〈a, Ta〉
itself. Differently from Description Logics, however, 〈a, Ta〉 is not the Least Com-
mon Subsumer (LCS) of itself—where “LCS” would be defined as in Def. 2,

with “⇔” in place of “⇒”. This is because when the two triples <<a p c>>,
<<a q d>> are in Ta, with p 6= q, the Least Common Subsumer should con-
tain the triple <<a [] []>>. Such a triple is not derivable from RDF rules
because of the blank node in the predicate position. Recall that from a triple
<<a p c>>, one can derive both <<[] p c>> (Rule se2 in the W3C document
[17]) and <<a p []>> (Rule se1), but not <<a [] c>>. One would need a
third rule se3, deriving exactly such a triple. The proposal of such an extension
of RDF could be a subject of future research.

Commutativity. In Condition (1), it is evident that the role of a and b
is completely interchangeable. Hence, a Common Subsumer of 〈a, Ta〉, 〈b, Tb〉 is
always a Common Subsumer of 〈b, Tb〉, 〈a, Ta〉.

For the clustering applications we have in mind, it is necessary to extend the
idea of Common Subsumer to a group of r-graphs 〈a1, Ta1〉, . . . , 〈an, Tan〉. We
can adapt the computation of a Common Subsumer from two to n r-graphs, by
first computing a Common Subsumer 〈x1, T1〉 of, say, 〈a1, Ta1

〉, 〈a2, Ta2
〉, and

then computing a Common Subsumer 〈x2, T2〉 of 〈x1, T1〉 and 〈a3, Ta3
〉, etc., till

computing a Common Subsumer 〈xn−1, Tn−1〉 of 〈xn−2, Tn−2〉 and 〈an, Tan
〉.

In this case, it is important to ensure that no matter what pair of r-graphs we
start from, and in what order we consider the rest of them, we always compute
a Common Subsumer of all r-graphs. We refer to this property as Associativity,
for historical reasons, although our computation does not define a proper alge-
braic operator. We state the property for just three r-graphs, since its inductive
extension to n r-graphs is straightforward.

Theorem 1 (Associativity). Given 〈a1, Ta1
〉, 〈a2, Ta2

〉, 〈a3, Ta3
〉, let 〈x1, T1〉

be a Common Subsumer of 〈a1, Ta1〉, 〈a2, Ta2〉. Then, computing the Common
Subsumer 〈x2, T2〉 of 〈x1, T1〉 and 〈a3, Ta3〉, one obtains a Common Subsumer of
〈a1, Ta1

〉, 〈a2, Ta2
〉, 〈a3, Ta3

〉, pairwise considered.

Proof. (Sketch.)We prove that 〈x2, T2〉 is a Common Subsumer of each of the
three pairs of r-graphs 〈a1, Ta1

〉–〈a2, Ta2
〉, 〈a2, Ta2

〉–〈a3, Ta3
〉, 〈a1, Ta1

〉–〈a3, Ta3
〉.

Let G be the union of all r-graphs, G1 be the union of G with the triples involv-
ing x1 and attached resources, and let G2 be the union of G1 with the triples
involving x2 and all attached resources.

If ∃t2 = <<x2 w2 y2>> entailed by G2, then from Def. 2, there exist both a
triple <<x1 w1 y1>> entailed by G1, and a triple <<a3 p3 c3>> entailed by G,
and such that 〈w2,W2〉 is a Common Subsumer of 〈w1,W1〉 and 〈p3, Tp3

〉, and
〈y2, Y2〉 is a Common Subsumer of 〈y1, Y1〉 and 〈c3, Tc3〉. We now apply Def. 2
to 〈x1, T1〉: there exist two triples <<a1 p1 c1>>, <<a2 p2 c2>> which are
both entailed by G, and such that 〈w1,W1〉 is a Common Subsumer of 〈p1, Tp1〉
and 〈p2, Tp2〉, and 〈y1, Y1〉 is a Common Subsumer of 〈c1, Tc1〉 and 〈c2, Tc2〉. This
proves that 〈x2, T2〉 is also a Common Subsumer of 〈a1, Ta1

〉 and 〈a2, Ta2
〉, and

since there exists also the triple <<a3 p3 c3>>, 〈x2, T2〉 is also a Common Sub-
sumer of the couples of r-graphs 〈a2, Ta2

〉–〈a3, Ta3
〉, 〈a1, Ta1

〉–〈a3, Ta3
〉. �

Example 2. If we add to the two r-graphs of Example 1 also the r-graph
〈The Big Sleep (1946 film), TThe Big Sleep (1946 film)〉, with the relevant triples:

dbpedia:The_Big_Sleep_(1946_film)

rdf:type dbpedia-owl:Film;

dbpprop:director dbpedia:Howard_Hawks;

dbpprop:language "English@en" .

one can get as a Common Subsumer 〈 :cs5, T〉, where T contains also:

_:cs5

rdf:type dbpedia-owl:Film;

dbpprop:director _:cs6;

dbpprop:language _:cs7 .

This result can be obtained either by comparing the above r-graph with each of
the initial r-graphs of Example 1, or by comparing the above r-graph with the
Common Subsumer :cs2 already computed in Example 1. (End of example).

5 Finding Common Subsumers in RDF

In order to find Common Subsumers of a pair of RDF resources, we propose
Algorithm 1 below, which is an anytime algorithm.

As mentioned in Sect. 3, to define the r-graph of a resource r, we determine
the subset Tr ⊆ TWr of triples relevant for r through its characteristic function
σTr

: TWr → {false, true}:

σTr
(t) =

{
true if t ∈ Tr
false if t /∈ Tr

Algorithm 1 takes as input two resources, a and b and the related maximum
number of investigation calls, na and nb (na ≥ 1, nb ≥ 1). At any time, it can
return a Common Subsumer x, together with the contextual set T of relevant
triples inferred till the moment of its interruption. We notice that T does not
only include triples <<x y z>> involving x as subject, but also triples describing
y and z and all resources needed to provide the required representation of x.

Algorithm 1 manages a global data structure S, collecting information about
already computed Common Subsumers stored as tuples [p, q, pq], where p and q
are RDF resources and pq is (a self-evident name for) their Common Subsumer.
S can be accessed through the pair p, q.

The adoption of variables na and nb allows for limiting the recursive depth
for computing the Common Subsumer of a and b, in presence of a hypothetically
unlimited dataset. S supports, instead, the management of cycles in Common
Subsumer computation which may occur during investigation.

In Rows 3 and 5, Algorithm 1 asks for the computation of σTa
and σTb

, in
order to define the sets, Ta and Tb of relevant triples for the input resources.

The rationale for reverting to a subset of relevant triples defining a resource is,
as hinted before, the trade-off between the need for a full resource representation

Find CS(a, na, b, nb);
Input : a, na, b, nb

Output: x, T

1 Let S be a global data structure collecting computed Common Subsumers ;
2 Let T be a global set of triples describing the Common Subsumer;
3 σTa = compute σ(na) ;
4 Ta = {t | σTa(t) = true};
5 σTb = compute σ(nb);
6 Tb = {t | σTb(t) = true};
7 T = Ta ∪ Tb;
8 x = explore(a, σTa , na, b, σTb , nb);
9 return x, T

Algorithm 1: Initialization and start of CS construction

and computability of Common Subsumers in a dataset as the Web of Data, too
large to explore thoroughly.

In our current implementation we adopt Algorithm 2, compute σTr (nr), for
computing σTr for a generic resource r, to be investigated through up to nr calls.

Intuitively, Algorithm 2 considers relevant (see Row 5) only triples whose
subject belongs to specific datasets of interest (collected in the set D) and re-
turns an empty set of relevant triples when r has not to be further investigated,
because the maximum recursive depth has been reached (Rows 2–3). In this way,
Algorithm 2 ensures that at least one of the base cases in Definition 2 is reached
(see Row 6 in Algorithm 3). We notice that more complex functions could be
computed according to some heuristics without affecting Algorithm 1.

compute σ(nr);
Input : nr: maximum recursive depth in the RDF graph exploration;
Output: σTr

1 let D be set of RDF datasets of interest;
2 if nr = 0 then
3 σTr = function σTr (t) {return false}
4 else
5 σTr = function σTr (t) { if t ∈ D then return true else return false };
6 return σTr ;

Algorithm 2: Computation of a simple σTr

In order to start searching for a Common Subsumer of a and b, Algorithm 1
calls in Row 8 the recursive function explore, defined in Algorithm 3.

Algorithm 3 investigates on the sets (if both not empty – see Row 6) of
relevant triples of the input resources a and b (Rows 7–26) and returns a resource
x which is a blank node (or one of the input resources, if they are equal to each
other – see Rows 3–5).

explore(a, σTa , na, b, σTb , nb);
Input : a, σTa , na, b, σTb , nb

Output: x
1 Ta = {t | σTa(t) = true};
2 Tb = {t | σTb(t) = true};
3 if 〈a, Ta〉 = 〈b, Tb〉 then
4 add Ta to T ;
5 return a ;

6 if Ta = ∅ or Tb = ∅ then return x;
7 foreach <<a p c>> ∈ Ta do
8 foreach <<b q d>> ∈ Tb do
9 if [p, q, pq] ∈ S then

10 y = pq;
11 else
12 σTp = compute σ(na − 1);
13 σTq = compute σ(nb − 1);
14 y = explore(p, σTp , (na − 1), q, σTq , (nb − 1));
15 add [p, q, y] to S ;
16 add Ty to T;

17 if [c, d, cd] ∈ S then
18 z = cd;
19 else
20 σTc = compute σ(na − 1);
21 σTd = compute σ(nb − 1);
22 z = explore(c, σTc , (na − 1), d, σTd , (nb − 1));
23 add [c, d, z] to S ;
24 add Tz to T;

25 if y 6= [] or z 6= [] then add <<x y z>> to Tx ;
26 add Tx to T;

27 return x;

Algorithm 3: Investigation on Relevant Graph Portion

For each pair of triples <<a p c>> ∈ Ta and <<b q d>> ∈ Tb, Algorithm 3
performs a recursive call to investigate over the pairs of resources p and q (Row
14), and c and d (Row 22), unless such pairs have been already computed in any
previous call (Rows 9–10 and 17–18). All sets of relevant triples inferred during
the investigation are added to the global set T (Rows 4, 16, 24, 26).

The maximum number of recursive calls to be still performed, na and nb, is
updated at each call (Rows 12 and 22).

Algorithm 1 finally returns the result coming from Algorithm 3, together
with the set T of triples required to fully describe x (Row 8 in Algorithm 1).

5.1 Computational Issues

Given 〈a, Ta〉 and 〈b, Tb〉 with |Ta| = |Tb| = n, we note that, in very artificial
cases, a Common Subsumer 〈x, Tx〉 of them, can grow as large as |Tx| ∈ O(n2),

and when generalized to k r-graphs, a Common Subsumer of all of them can
grow as O(nk)—i.e., exponential in k. This is a very artificial worst case, since it
presumes that every triple <<a p c>> of Ta is “comparable” with every triple
<<b q d>> of Tb—e.g., this case would occur if all triples use the same predicate
p = q, and every pair of 〈c, Tc〉, 〈d, Td〉 yields a non-trivial Common Subsumer.

A more realistic situation is that for each triple of Ta, only a constant number
of triples of Tb, say α > 1, yields a new triple added to Tx. Observe that this was
the case for Example 1, with α = 1. In this case, |Tx| = αn, and for k resources,
O(αkn)—still exponential in k for α > 1. Even if α > 1, a strategy to keep the
Common Subsumer “small” could be, for each triple in Ta to choose one among
the α triples of Tb which would add a triple to Tx—in practice, to force α = 1.
The result would be still a Common Subsumer anyway, even if less informative
than the “original” one, whose size is |Tx| = n, independent of k.

6 Conclusion

Motivated by the need for greedily learning shared informative content in col-
lections of RDF resources, we defined Common Subsumers. We decided not
to handle Common Subsumers which are also subsumption minimal (known
as Least Common Subsumer in DLs) because we need to refer to a selective
representation of resources in terms of descriptive triples, in order to ensure
computability in the reference dataset (the Web of Data), too large to be ex-
plored. The adoption of an anytime algorithm allows for using partial learned
informative content for further processing, whenever the search for Common
Subsumers is interrupted. Thanks to such distinguishing features, the proposed
approach may support the clustering of collections of RDF resources, by ex-
ploiting associativity of Common Subsumers. Our future work will be devoted
to the investigation on RDF clustering methods based on Common Subsumers
computation, possibly adopting strategies proposed in our past research ([8],[9]).

Acknowledgments

We acknowledge support of project ”Semantic Expert Finding for Service Port-
folio Creation” funded by HP (Hewlett-Packard) Labs - Innovation Research
Program Award.

References

1. Baader, F., Calvanese, D., Mc Guinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook – 2nd edition. Cambridge University Press (2007)

2. Baader, F., Sertkaya, B., Turhan, A.Y.: Computing the least common subsumer
w.r.t. a background terminology. J. Applied Logic 5(3), 392–420 (2007)

3. Beckett, D., Berners-Lee, T.: Turtle - Terse RDF Triple Language, W3C Team
Submission. http://www.w3.org/TeamSubmission/turtle/ (2011)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
248(4) (2001), (34-43)

5. Cohen, W., Borgida, A., Hirsh, H.: Computing least common subsumers in descrip-
tion logics. In: Rosenbloom, P., Szolovits, P. (eds.) Proc. of AAAI’92. pp. 754–761.
AAAI Press (1992)

6. Cohen, W.W., Hirsh, H.: The learnability of description logics with equality con-
straints. Machine Learning 17(2-3), 169–199 (1994)

7. Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logics: Theoretical
and experimental results. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Proc. of
KR’94. pp. 121–133 (1994)

8. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F., Piscitelli, G., Coppi, S.: Knowl-
edge Based Approach to Semantic Composition of Teams in an Organization. In:
Proc. of SAC ’05. pp. 1314–1319. ACM (2005)

9. Colucci, S., Di Sciascio, E., Donini, F.M., Tinelli, E.: Finding informative common-
alities in concept collections. In: Proc. of CIKM ’08,. pp. 807–817. ACM (2008)

10. d’Amato, C., Fanizzi, N., Lawrynowicz, A.: Categorize by: Deductive aggregation
of semantic web query results. In: Proc. of ESWC ’10. pp. 91–105. Springer (2010)

11. De Giacomo, G., Lenzerini, M., Rosati, R.: Higher-order description logics for
domain metamodeling. In: Proc. of AAAI ’11 (2011)

12. Delteil, A., Faron-Zucker, C., Dieng, R.: Learning ontologies from RDF annota-
tions. In: ”Proc. of the Second Workshop on Ontology Learning (2001)

13. Fanizzi, N., d’Amato, C., Esposito, F.: Metric-based stochastic conceptual cluster-
ing for ontologies. Information Systems 34(8), 792–806 (2009)

14. Frazier, M., Pitt, L.: Classic learning. In: Proc. of the 7th Annual ACM Confer-
ence on Computational Learning Theory. pp. 23–34. ACM (1994)

15. Garcia-Plaza, A., Fresno, V., Martinez, R.: Web page clustering using a fuzzy logic
based representation and self-organizing maps. In: Proc. of WI-IAT ’08. vol. 1, pp.
851–854. ACM (2008)

16. Grimnes, G.A., Edwards, P., Preece, A.: Instance based clustering of semantic web
resources. In: Proc. of the ESWC’08. pp. 303–317. Springer (2008)

17. Hayes, P.: RDF semantics, W3C recommendation.
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/ (2004)

18. Lawrynowicz, A.: Grouping results of queries to ontological knowledge bases by
conceptual clustering. In: Proc. of ICCCI 2009. vol. 5796, pp. 504–515. Springer
(2009)

19. Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R., Ko, D., Yu, C.:
Web-scale data integration: You can afford to pay as you go. In: Proc. of CIDR
’07. pp. 342–350 (2007)

20. Mahmoud, H.A., Aboulnaga, A.: Schema clustering and retrieval for multi-domain
pay-as-you-go data integration systems. In: Proc. of SIGMOD ’10. pp. 411–422.
ACM (2010)

21. Pan, J.Z., Horrocks, I.: RDFS(FA): Connecting RDF(S) and OWL DL. IEEE
Trans. on Knowl. and Data Eng. 19(2), 192–206 (Feb 2007)

22. Shadbolt, N., Hall, W., Berners-Lee, T.: The semantic web revisited. Intelligent
Systems, IEEE 21(3), 96–101 (2006)

23. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. Journal of Web
Semantics 3(2–3), 79–115 (2005)

24. Zeng, H.J., He, Q.C., Chen, Z., Ma, W.Y., Ma, J.: Learning to cluster web search
results. In: Proc. of SIGIR ’04. pp. 210–217. ACM (2004)

