
A Linked Data Recommender System using a
Neighborhood-based Graph Kernel

Vito Claudio Ostuni1, Tommaso Di Noia1,
Roberto Mirizzi2, and Eugenio Di Sciascio1

1 Polytechnic University of Bari – Bari, Italy
2 Yahoo! – Sunnivale, CA (US)

{vitoclaudio.ostuni,tommaso.dinoia,eugenio.disciascio}@poliba.it,
robertom@yahoo-inc.com

Abstract. The ultimate mission of a Recommender System (RS) is to
help users discover items they might be interested in. In order to be really
useful for the end-user, Content-based (CB) RSs need both to harvest
as much information as possible about such items and to effectively han-
dle it. The boom of Linked Open Data (LOD) datasets with their huge
amount of semantically interrelated data is thus a great opportunity for
boosting CB-RSs. In this paper we present a CB-RS that leverages LOD

and profits from a neighborhood-based graph kernel. The proposed ker-
nel is able to compute semantic item similarities by matching their local
neighborhood graphs. Experimental evaluation on the MovieLens dataset
shows that the proposed approach outperforms in terms of accuracy and
novelty other competitive approaches.

1 Introduction

In personalized information access, the role played by recommender systems is
growing considerably in importance. Every time we buy a product on Amazon,
watch a movie on Netflix, listen to a song on Pandora, just to cite a few, their
recommender systems suggest new items we could be interested in. Broadly
speaking, existing technologies used to build recommendation engines fall in
either of the following two categories: content-based filtering and collaborative
filtering ones. In this work we focus on Content-based Recommender Systems
(CB-RSs). They are based exclusively on domain knowledge to compute useful
recommendations for the end-users by looking at information collected in their
profile. On the one hand, when designing and developing a CB-RS, one of the
biggest issues to face is the difficulty to get such knowledge. On the other hand, a
common problem of this technique is the lack of novelty for recommended items.

The research presented here addresses these two problems by exploiting
Linked Open Data to get domain knowledge and by proposing a neighborhood-
based graph kernel. This is able to effectively handle the graph-based nature of
the underlying LOD knowledge and capture the relations existing between items
in order to compute accurate and novel recommendations. Once we represent
the items by their local graph, that we call item neighborhood graph, the kernel

2 V.C. Ostuni, T. Di Noia, R. Mirizzi, E, Di Sciascio

computes a weighted count of common entities between two item neighborhood
graphs by taking into account their local structure. Finally, we use such kernel
with SVM regression to learn the user model and to output a recommendation
list.

Main contributions of this work are:

– mining of the semantics associated to items through their LOD-based local
graph representation;

– formulation of a neighboorhood-based graph kernel for matching LOD-based
item descriptions;

– improvement in accuracy and novelty with respect to existing CB-RSs that
leverage LOD;

The rest of this paper is structured as follows. In Section 2 we detail our
recommendation approach, specifying how we leverage Linked Open Data and
defining a graph-kernel suitable for RDF data. The evaluation of our system and
discussion of the results is carried out in Section 3. Then, we present relevant
related work in Section 4. Finally, conclusion and future work conclude this
paper.

2 Content-based Recommendation from LOD
using graph kernels

A common way of computing content-based recommendations is learning a func-
tion that, for each item in the system, predicts the relevance of such item for
the user. In a few words, the relevance represents the likelihood that the user is
interested in that item [17]. The application of Machine Learning techniques is a
typical way to accomplish such task [17]. A top-N item recommendation problem
in a standard content-based setting is mainly split into two different tasks: (i)
given a collection of items for which past user’s preferences are available, learn a
regression or classification model to predict the relevance associated to unknown
items; (ii) eventually, according to such scores, the system recommends the most
relevant items to the user.

More formally, let I be the set of items to use in the recommendation. For
each user u ∈ U , we assume to have a collection of items Iu ⊂ I, with their
associated relevance scores ru,i. Depending on the system these scores can be
derived from either implicit or explicit feedback. Given a training set for u defined
as Tu = {(i, ru,i) with i ∈ Iu}, the two tasks for the top-N recommendation
problem, in our setting, consist of:

1. learning a function fu : I → R from Tu which assigns a relevance score to
the items in I;

2. using such function to predict the score associated to all the unknown items
in I \ Iu, rank them and recommend the top-N .

Due to the underlying data model of RDF datasets, we are particularly inter-
ested in those machine learning methods that are appropriate for dealing with

itle Suppressed Due to Excessive Length 3

objects structured as graphs. A popular class of techniques particularly suited
for working with structured data are Kernel Methods [19]. Given two input ob-
jects i and j, defined in an input domain space D, the basic idea behind Kernel
Methods is to construct a kernel function k : D ×D → R, that can be infor-
mally seen as a similarity measure between i and j. This function must satisfy
k(i, j) = 〈φ(i), φ(j)〉 for all i, j ∈ D, where φ : D → F is a mapping function
to a inner product1 feature space F . A kernel function defined in such a way
must be symmetric and positive semidefinite in order to be a valid kernel [19].
Then, the classification or regression task involves linear convex methods based
exclusively on inner products computed using the kernel in the embedding fea-
ture space. These methods provide a powerful framework for decoupling the data
representation from the learning task.

In this work we define a novel graph-based kernel and adopt SVM Regression
[19] as kernel-based algorithm for learning the user model fu. We formalize our
top-N item recommendation problem in a regression setting because a continuous
relevance score is needed for computing the final ranking.

Hereafter we describe the way we represent items in I by means of LOD

datasets and then we show how such a representation is leveraged in our graph-
based kernel.

2.1 Graph-based Item Representation

Defining an expressive and efficient kernel starting from RDF data is not a trivial
task. In the last few years various graph kernel functions have been designed to
capture the intrinsic similarity of graphs. Unfortunately many complex kernels,
such as the ones based on subgraph isomorphism, maximum common subgraphs,
or graph edit distance are appropriate for chemical structures and biological
networks but are not suitable for knowledge graphs. Mostly because of the size of
those graphs that require computational efficient methods and because they have
different properties due to the fact that they are not governed by physical laws
[9]. In addition, as pointed out by [11], graphs representing chemical compounds
usually have few node labels which occur frequently in the graph and nodes in
these graphs have a low degree. In contrast, in RDF graphs node URIs are used
as unique identifiers and hence occur only once in a graph. Moreover, nodes in
RDF graphs may have a very high degree.

In our approach we condition the computation of the graph kernel to a graph
matching problem. We say that two items are similar if they share a similar
neighborhood in the RDF graph. The rationale behind our approach is that two
items are similar if they are related to similar entities. Each item i ∈ I is then
modelled by extracting a graph-based representation from the underlying RDF

data. Given the URI corresponding to i, we perform a breadth-first search (via
SPARQL queries) from this item up to a limited depth to extract a subgraph which
characterizes the information content associated to i. In the approach presented

1 Following the notation used in the kernel literature, we use 〈x,y〉 to denote the
inner product between the vectors x and y.

4 V.C. Ostuni, T. Di Noia, R. Mirizzi, E, Di Sciascio

Fig. 1. Fragment of an RDF graph extracted from DBpedia.

in this paper, we consider the underlying RDF graph as undirected because we are
mostly interested in the entities and not in the relation type in itself. So, given
an RDF entity e, we collect all the RDF triples where it appears as either subject
or object via a property p. Collecting all the RDF triples extracted starting from
each item we build a new undirected graph G = (E,P), where E represents the
set of nodes (entities) and P ⊆ E × E the set of edges. We name each edge
in P as pk(en, em) to denote that the property pk connects the two entities en
and em. This means that either the triple (en, pk, em) or the triple (em, pk, en)
belongs to the original RDF graph. We notice that, by construction of G, we have
I ⊂ E. In this work, we do not consider literals nor datatype properties in the
construction of the graph.

Fig. 1 shows a sketch of the graph G extracted from DBpedia for the movie
domain. The nodes in red belong to I and represent movies. As for the other
entities in the figure, it is easy to notice they represent actors, directors, nar-
rators, categories, classes. In the actual graph, there are many more properties
that allow us to get rich and detailed knowledge about movies.

We introduce now the notion of h-hop item neighborhood graph for G.
For a generic item i, its h-hop neighborhood graph Gh(i) = (Eh(i), Ph(i)) is the
subgraph of G induced by the set of entities Eh(i) that are reachable in at most
h hops from i according to the shortest path. Fig. 2 shows two possible 2-hop
item neighborhood graphs for item i and item j, respectively G2(i) and G2(j).
We see that, if we consider the shortest path, all the entities are no more than
2 hops distant from i and j, respectively.

Finally, we define Êh(i) = Eh(i) \ Eh−1(i) as the set of entities exactly h
hops far from i. In other words, these entities are reachable, based on the shortest
path, only after h hops. Analogously, we define P̂h(i) = Ph(i) \ Ph−1(i).

In order to clarify how to build Êh and P̂h, we show an example using the
two item neighborhood graphs in Fig. 2. With reference to items i and j, we
have:

itle Suppressed Due to Excessive Length 5

Fig. 2. Two 2-hop item neighborhood graphs.

E1(i) = {e1, e2} P 1(i) = {p1(i, e1), p2(i, e1), p1(i, e2)}
E2(i) = {e1, e2, e4, e5} P 2(i) = {p1(i, e1), p2(i, e1), p1(i, e2), p3(e1, e4),

p3(e1, e5), p3(e2, e5)}
Ê1(i) = {e1, e2} P̂ 1(i) = {p1(i, e1), p2(i, e1), p1(i, e2)}
Ê2(i) = {e4, e5} P̂ 2(i) = {p3(e1, e4), p3(e1, e5), p3(e2, e5)}

E1(j) = {e2, e3} P 1(j) = {p2(j, e2), p1(j, e3)}
E2(j) = {e2, e3, e4, e5} P 2(j) = {p2(j, e2), p1(j, e3), p3(e2, e5), p3(e3, e4)}
Ê1(j) = {e2, e3} P̂ 1(j) = {p2(j, e2), p1(j, e3)}
Ê2(j) = {e4, e5} P̂ 2(j) = {p3(e2, e5), p3(e3, e4)}
As we will see in Section 2.2, Êh(i) and P̂h(i) form the basis for our neighborhood-

based graph kernel. We may observe that Êh(i) contains information about

which entities are associated to item i at a given distance, while P̂h(i) about
how they occur.

Finally, we can see that if Gh(i) and Gh(j) share at least one entity, then i
and j are at most distant 2 · h hops. For instance, for a 2-hop item neighborhood
graph as the ones depicted in Fig. 2 we can compute paths of up to length 4
between i and j.

Summing up, let I = {i, j, . . .} be the set of items we want to recommend,
as for example movies or musical artists, we represent them by their h-hop
neighborhood graph Gh(i). This graph-based data is exploited by our kernel to
build a LOD-based recommender system able to suggest relevant resources in I,
given Tu.

2.2 Neighborhood-based graph kernel

Based on the notion of h-hop item neighborhood graph we define the h-hop
neighborhood-based graph kernel kGh(i, j) as:

kGh(i, j) = 〈φGh(i), φGh(j)〉 (1)

6 V.C. Ostuni, T. Di Noia, R. Mirizzi, E, Di Sciascio

where the application of the map function φGh to the h-hop item neighbor-
hood graph Gh(i) gives us its feature vector representation:

φGh(i) = (wi,e1 , wi,e2 , ...wi,em , ..., wi,et)

where w weights refer to entities in E. Specifically, wi,em represents the weight
associated to the entity em in Gh(i). Each term is computed using the following
formula:

wi,em =

h∑
l=1

αl · cP̂ l(i),em

where αl coefficients are real and non-negative, and:

cP̂ l(i),em
= |{pk(en, em) | pk(en, em) ∈ P̂ l(i) ∧ em ∈ Êl(i)}|

In particular, cP̂ l(i),em
is the number of edges in P̂ l(i) that involve the node em,

that is the occurrence of the entity em in the item neighborhood at distance l.
The more the entity em appears in paths originated by i, the more it is descriptive
of i. Indeed, αl is a weighting factor depending on the distance l from the item
i, whose aim is to up-weight entities closer to the item and to penalize farther
entities. It allows us to take into account the locality of those entities in the graph
neighborhood. The closer an entity em to the item i, the stronger its relatedness
to it. In other words, αl can be seen as a decay factor for entities farther from
the item i. In Section 3.2 we will show the results of the experimental evaluation
for different values of αl.

To clarify how we compute the weights w in the construction of the φGh

feature vectors we show an example using the two item neighborhood graphs
represented in Fig. 2. With respect to item i, we have: cP̂ 1(i),e1

= 2, cP̂ 1(i),e2
= 1,

cP̂ 2(i),e4
= 1, cP̂ 2(i),e5

= 2. For item j, we have: cP̂ 1(j),e2
= 1, cP̂ 1(j),e3

= 1,

cP̂ 2(i),e4
= 1, cP̂ 2(i),e5

= 1. All other cP̂ l(i),e are equal to 0. Once the occurrences

cP̂ l,e are known, the computation of the w scores is straightforward.

Finally, the kernel kGh(i, j) can be computed by taking the scalar product of
the respective feature vectors, φGh(i) and φGh(j). The result of the dot product
is essentially the weighted count of the common entities shared by the two item
neighborhoods. It is noteworthy that this relatedness measure is based both on
occurrence and on locality of the entities.
In order to uniform different neighborhood sizes, each feature vector is normal-
ized to unit length using the L2 norm, hence the dot product corresponds to the
cosine similarity measure.
Similarly to [20] and [3], our kernel relies on an explicit computation of the fea-
ture vectors. This leads to a sparse vector representation that can speed up the
computation with respect to pairwise item computation, allowing us to use fast
linear SVM solvers.

itle Suppressed Due to Excessive Length 7

3 Experimental Evaluation

In this section we detail the experiments accomplished to evaluate our approach.
In particular we are interested in the following two aspects: (i) evaluate the ac-
curacy and novelty of the proposed neighborhood-based graph kernel for recom-
mendations leveraging LOD; (ii) investigate the improvements of the proposed
approach with respect to a previous work on LOD-based RSs [4] and a RS based
on another graph kernel for RDF [11].

3.1 Experimental Setting

Datasets description. The evaluation has been carried out on the well known
MovieLens2 dataset. The original MovieLens 1M dataset contains 1,000,209 rat-
ings for 3,883 movies by 6,040 users. Starting from this dataset, we first trans-
formed the 1-5 star ratings to binary relevance scores using 4 as threshold. Then,
in order to exploit the knowledge encoded in LOD datasets, we mapped items
in MovieLens to their corresponding DBpedia URI. In this work, we leveraged
DBpedia 3.9, one of the principal knowledge bases in the the LOD cloud. It cur-
rently contains about 4 million resources, out of which 3.22 million are classi-
fied in a consistent ontology3. For a detailed explanation about the mapping
methodology please refer to [15]. The item mappings to DBpedia are available
at: http://sisinflab.poliba.it/semanticweb/lod/recsys/datasets/.

Then, for each movie in the dataset we extracted its h-hop neighborhood
graph with h = 2. This choice is driven by a preliminary analysis where we
found out that h = 2 is a good compromise between computation time and
accuracy of the recommendation. During the search, we considered all the RDF

object properties belonging to the DBpedia ontology4, plus three more proper-
ties: rdf:type, dcterms:subject and skos:broader. At the end of the data
extraction procedure, the resulting graph contains 121,584 entities.

Evaluation Methodology. In our evaluation we focused on accuracy and nov-
elty performances. We measured accuracy by Precision@N/Recall@N [8] and
Mean Reciprocal Rank, and novelty by Entropy-Based Novelty [1].
Precision@N is computed as the fraction of top-N recommended items in test
set that are relevant for the user. Recall@N is the fraction of relevant items in
the test set which appear in the top-N recommendation list.
Mean Reciprocal Rank (MRR) is useful for evaluating how early in the list the
first relevant recommended item appears. Specifically, Reciprocal Rank is the in-
verse of the position of the first relevant recommendation. The higher, the better.
In the computation of these accuracy metrics, we considered only the items that
appear in the user test set to populate the top-N user recommendation list.
As pointed out by [12], the most accurate recommendations according to the

2 http://www.grouplens.org/node/73
3 http://wiki.dbpedia.org/Ontology39
4 http://mappings.dbpedia.org/server/ontology/classes/Film

8 V.C. Ostuni, T. Di Noia, R. Mirizzi, E, Di Sciascio

standard metrics are sometimes not the recommendations that are most useful
to users. In order to assess the utility of a recommender system, it is extremely
important to evaluate also its capacity to suggest items that users would not
readily discover for themselves, that is its ability to generate novel and unex-
pected results. The Entropy-Based Novelty (EBN) expresses the ability of a
recommender system to suggest less popular items, i.e. items not known by a
wide number of users. In particular, for each user’s recommendation list Lu, the
novelty is computed as:

EBNu@N = −
∑
i∈Lu

pi · log2 pi

where:

pi =
|{u ∈ U | i is relevant to u}|

|U |
The lower EBNu@N , the better the novelty.

Table 1 shows some statistics about the dataset used for the experiments. In
order to assess the performance of the proposed algorithm for different sizes of the
training set, we split the MovieLens dataset in different chunks of training/test
data: 20-80%, 40-60% and 80-20%. Evaluating the performance also with a small
training set allows us to understand how immune the system is to shortage of
information about users i.e., its immunity to cold-start problem for user.

For each training/test partitioning, the task was to use the training set to
train the model and generate the top-N recommendation list for each user. After
the output was produced, we evaluated the system by the metrics previously
defined, according to the data in the test set. We repeated the experiment three
times for each condition of the training/test partitioning, with randomly selected
samples each time. The results presented in Table 2 are averaged across the three
runs.

training/test partitioning users items avg train items per user avg test items per user
MovieLens 20-80% 6038 3148 29.67 116.78
MovieLens 40-60% 6036 3148 58.98 87.45
MovieLens 80-20% 5992 3148 118.23 29.09

Table 1. Dataset statistics

3.2 Results Discussion

The first part of our tests was carried out to tune the αl coefficients (as defined in
Section 2.2) in order to evaluate the effectiveness of the kernel. For this purpose,
we performed several experiments by varying the value of the two coefficients
α1 and α2. We remember that since our experiments have been performed with
h = 2, we only have these two coefficients. In particular we considered the ratio
α1

α2
. The rationale behind our choice is that the higher α1

α2
, the higher is the

itle Suppressed Due to Excessive Length 9

importance given to the entities directly connected to the items (1-hop entities).
A value of α1

α2
< 1 means that 2-hop entities are given more importance than

1-hop entities. In Table 2 we show the results for several values of the α-ratio.
Accuracy. When we have a few ratings in the training set (as for MovieLens

20-80%), we notice the best accuracy results are reached for values α1

α2
≤ 1.

To us, this is quite surprisingly since it means that, if we want to improve the
accuracy of recommended items, the contribution carried by entities at a 2-hop
distance must be considered more or equally relevant than the one of the 1-hop
distant entities. Our interpretation for this behavior is that when the training
set is small, the system has to learn the user model based on a few items in the
user profile. Hence, up-weighting the entities at 2-hop distance allows the system
to better exploit the LOD graph structure by catching implicit relations between
items. The situation changes when the training set grows.
Novelty. The best novelty results are achieved when the α-ratio is equal to 1,
under all the conditions of partitioning. This means giving the same importance
to 1-hop and 2-hop entities.

Comparison with other methods. In the second part of our experiments
we compared our approach with other existing RSs. Table 3 shows the results.
NK-α-ratio refers to our Neighborhood-based Kernel approach. VSM is the LOD-
based RS presented in [4]. It relies on a bag-of-resources item representation
and the well known Vector Space Model. The user model is learned using SVM.
Both in [4] and in our approach the C meta-parameter for SVM is chosen via
cross-validation. NB uses the same item feature representation as [4], but a dif-
ferent learning algorithm, the Naive Bayes classifier. This is the baseline for our
comparison. WK refers to the Walk-based Kernel presented in [11] for dealing with
RDF graphs. The procedure to learn the user model is the same, we only replaced
the kernel. The results show that our approach performs always better than the
others, both in accuracy and in novelty.

4 Related Work

Being our approach content-based and leveraging Linked Open Data, in this
section we will overview RSs based on ontologies and on LOD. Part of this sec-
tion is also reserved to existing literature about graph kernels.
Ontology-based RSs. Foxtrot and Quickstep are two ontology-based recom-
mender systems presented in [13]. The definition of semantic user profiles allows
the system to compute collaborative recommendations. In [2] the authors pro-
pose a hybrid recommendation system, where user preferences and item features
are described by semantic concepts to obtain users’ clusters corresponding to
implicit Communities of Interest. In [14] the authors introduce the so called se-
mantically enhanced collaborative filtering where structured semantic knowledge
about items is used in conjunction with user-item ratings to create a combined
similarity measure for item comparisons. In all of these works, experimental
evaluation demonstrates that the accuracy is improved especially in presence of

10 V.C. Ostuni, T. Di Noia, R. Mirizzi, E, Di Sciascio

α1/α2 MRR P@1 P@5 P@10 R@1 R@5 R@10 EBN@10 EBN@25 EBN@50
Training set 20% – Test set 80%

0.25 0.8701 0.7665 0.7708 0.6895 0.0259 0.1300 0.2342 0.3683 0.9110 1.8428
1 0.8454 0.7267 0.7482 0.6712 0.0242 0.1259 0.2304 0.2919 0.7493 1.5027
2 0.8570 0.7473 0.7591 0.6817 0.0249 0.1267 0.2312 0.4417 1.1223 2.3400
5 0.8536 0.7416 0.7551 0.6772 0.0245 0.1257 0.2311 0.3186 0.8239 1.6596
10 0.8541 0.7420 0.7576 0.6824 0.0243 0.1248 0.2310 0.4659 1.0691 1.9882
20 0.8551 0.7430 0.7574 0.6840 0.0245 0.1243 0.2309 0.3642 0.8930 1.8039

Training set 40% – Test set 60%
0.25 0.8700 0.7662 0.7792 0.6846 0.0351 0.1775 0.3128 0.6298 1.5448 3.0880
1 0.8576 0.7459 0.7671 0.6767 0.0343 0.1770 0.3101 0.4484 1.1523 2.3442
2 0.8676 0.7633 0.7738 0.6822 0.0347 0.1766 0.3110 0.6920 1.7489 3.572
5 0.8626 0.7542 0.7729 0.6787 0.0342 0.1761 0.3096 0.5196 1.3431 2.7098
10 0.8687 0.7637 0.7809 0.6866 0.0344 0.1775 0.3124 0.6955 1.6652 3.1951
20 0.8726 0.7709 0.7833 0.6882 0.0352 0.1776 0.3129 0.5665 1.4109 2.8935

Training set 80% – Test set 20%
0.25 0.8574 0.7465 0.7323 0.5737 0.1028 0.4705 0.6320 1.0336 2.5164 4.9358
1 0.8533 0.7393 0.7325 0.5756 0.1026 0.4738 0.6349 0.6584 1.7063 3.5096
2 0.8537 0.7389 0.7347 0.5754 0.1028 0.4739 0.6341 1.0251 2.5985 5.1991
5 0.8536 0.7393 0.7361 0.5777 0.1008 0.4740 0.6351 0.7945 2.0451 4.1497
10 0.8607 0.7505 0.7440 0.5796 0.1030 0.4771 0.6358 0.9947 2.4532 4.8567
20 0.8678 0.7625 0.7448 0.5799 0.1059 0.4775 0.6359 0.8489 2.1117 4.3242

Table 2. Accuracy and Novelty results for MovieLens data – kernel calibration.

alg MRR P@1 P@5 P@10 R@1 R@5 R@10 EBN@10 EBN@25 EBN@50
Training set 20% – Test set 80%

NK-0.25 0.8701 0.7665 0.7708 0.6895 0.0259 0.1300 0.2342 0.3683 0.9110 1.8428
NK-1 0.8454 0.7267 0.7482 0.6712 0.0242 0.1259 0.2304 0.2919 0.7493 1.5027
NB 0.7908 0.6577 0.6158 0.6099 0.0222 0.1071 0.2146 0.6817 1.4635 2.5681
VSM 0.8341 0.7101 0.7241 0.6633 0.0233 0.1188 0.2251 0.3543 0.8631 1.6847
WK 0.7948 0.6624 0.6167 0.6063 0.0223 0.1077 0.2143 0.5286 1.2648 2.3743

Training set 40% – Test set 60%
NK-1 0.8576 0.7459 0.7671 0.6767 0.0343 0.1770 0.3101 0.4484 1.1523 2.3442
NK-20 0.8726 0.7709 0.7833 0.6882 0.0352 0.1776 0.3129 0.5665 1.4109 2.8935
NB 0.7844 0.6452 0.6211 0.6158 0.0298 0.1451 0.2890 1.1050 2.4112 4.2484
VSM 0.8528 0.7392 0.7518 0.6722 0.0329 0.1679 0.3066 0.5329 1.3481 2.6926
WK 0.7911 0.6523 0.6185 0.6085 0.0298 0.1449 0.2883 0.7477 1.8834 3.6366

Training set 80% – Test set 20%
NK-1 0.8533 0.7393 0.7325 0.5756 0.1026 0.4738 0.6349 0.6584 1.7063 3.5096
NK-20 0.8678 0.7625 0.7448 0.5799 0.1059 0.4775 0.6359 0.8489 2.1117 4.3242
NB 0.7894 0.6506 0.6214 0.5454 0.0918 0.4174 0.6133 1.698 3.7625 6.5729
VSM 0.8509 0.7344 0.7309 0.5741 0.1001 0.4709 0.6340 0.7628 1.9818 4.042
WK 0.7892 0.6475 0.6161 0.5336 0.0923 0.4154 0.6106 0.9915 2.5958 5.0806

Table 3. Accuracy and Novelty results for MovieLens data – comparative approaches.

sparse datasets.
LOD-based RSs. In the last years, great interest has been shown by the sci-
entific community in using Linked Open Data for RSs. The authors in [7] were
among the first to theoretically propose to use LOD as knowledge base for recom-
mender systems. In [18] the authors use DBpedia to feed a RS based on matrix-
factorization. In [4, 5] a model-based approach and a memory-based one are
presented to compute content-based recommendations leveraging LOD datasets
and DBpedia in particular. More recently, two hybrid approaches have been pre-
sented: in [15] it is shown how to compute top-N recommendations from implicit
feedback using linked data sources and in [10] the authors propose an event rec-
ommendation system based on linked data and user diversity. In [16] a mobile

itle Suppressed Due to Excessive Length 11

RS that uses DBpedia as the core for the recommendation is presented.
Graph kernels. Several graph kernels have been proposed in machine learn-
ing. Based on the concept of Convolution Kernels [6], many kernel functions
work by counting common structures in graphs. While the problem of check-
ing whether two graphs are isomorph is known to be NP-complete, the task of
searching for common substructure usually can be done more efficiently. In [20]
the authors present a kernel based on the Weisfeiler-Lehman test of graph iso-
morphism. Basically they compute the number of subtrees shared between two
graphs. More recently, some variants of these kernels have been developed in
the field of Semantic Web with application to RDF graphs. In [11] graph kernels
based on intersection graphs and intersection trees are introduced. Finally, a
faster approximation of the Weisfeiler-Lehman graph kernel is presented in [3].

5 Conclusion and Future Work

The high-quality and vast information contained within Linked Open Data

datasets, makes LOD the perfect candidate for a new era of knowledge-enabled
and content-based recommender systems. In this paper we have presented a
content-based recommender system that leverages the knowledge encoded in se-
mantic datasets of the Linked Open Data compass. The innovative aspects of
this work are the way we represent items in the knowledge base by their neigh-
borhood graphs, and the usage of a neighborhood-based graph kernel that is
able to effectively exploit the local neighborhood of such items. The evaluation
shows an improvement in the accuracy and novelty of our system with respect to
existing approaches for content-based recommendation. Currently, we are work-
ing on other graph kernels which consider different substructures such as partial
subtrees.

References

1. A. Belloǵın, I. Cantador, and P. Castells. A study of heterogeneity in recommen-
dations for a social music service. In Proceedings of the 1st International Workshop
on Information Heterogeneity and Fusion in Recommender Systems, HetRec ’10,
pages 1–8, New York, NY, USA, 2010. ACM.

2. I. Cantador, A. Belloǵın, and P. Castells. A multilayer ontology-based hybrid
recommendation model. AI Commun. Special Issue on Rec. Sys., 21(2-3):203–210,
Apr. 2008.

3. G. K. D. de Vries. A fast approximation of the weisfeiler-lehman graph kernel for
rdf data. In ECML/PKDD (1), pages 606–621, 2013.

4. T. Di Noia, R. Mirizzi, V. C. Ostuni, and D. Romito. Exploiting the web of data in
model-based recommender systems. In Proceedings of the Sixth ACM Conference
on Recommender Systems, RecSys ’12, pages 253–256, New York, NY, USA, 2012.
ACM.

5. T. Di Noia, R. Mirizzi, V. C. Ostuni, D. Romito, and M. Zanker. Linked open
data to support content-based recommender systems. In Proceedings of the 8th

12 V.C. Ostuni, T. Di Noia, R. Mirizzi, E, Di Sciascio

International Conference on Semantic Systems, I-SEMANTICS ’12, pages 1–8,
New York, NY, USA, 2012. ACM.

6. T. Gärtner, P. A. Flach, and S. Wrobel. On graph kernels: Hardness results and
efficient alternatives. In COLT, pages 129–143, 2003.

7. B. Heitmann and C. Hayes. Using linked data to build open, collaborative rec-
ommender systems. In AAAI Spring Symposium: Linked Data Meets Artificial
Intelligence, 2010.

8. J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collab-
orative filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5–53, Jan.
2004.

9. A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao. Neighborhood based
fast graph search in large networks. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’11, pages 901–912,
New York, NY, USA, 2011. ACM.

10. H. Khrouf and R. Troncy. Hybrid event recommendation using linked data and user
diversity. In Proceedings of the 7th ACM Conference on Recommender Systems,
RecSys ’13, pages 185–192, New York, NY, USA, 2013. ACM.

11. U. Lösch, S. Bloehdorn, and A. Rettinger. Graph kernels for rdf data. In Pro-
ceedings of the 9th International Conference on The Semantic Web: Research and
Applications, ESWC’12, pages 134–148, Berlin, Heidelberg, 2012. Springer-Verlag.

12. S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough: How
accuracy metrics have hurt recommender systems. In CHI ’06 Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’06, pages 1097–1101, New
York, NY, USA, 2006. ACM.

13. S. E. Middleton, D. D. Roure, and N. R. Shadbolt. Ontology-based recommender
systems. Handbook on Ontologies, 32(6):779–796, 2009.

14. B. Mobasher, X. Jin, and Y. Zhou. Semantically enhanced collaborative filtering
on the web. In B. Berendt, A. Hotho, D. Mladeni, M. Someren, M. Spiliopoulou,
and G. Stumme, editors, Web Mining: From Web to Semantic Web, volume 3209
of Lecture Notes in Computer Science, pages 57–76. Springer Berlin Heidelberg,
2004.

15. V. C. Ostuni, T. Di Noia, E. Di Sciascio, and R. Mirizzi. Top-n recommendations
from implicit feedback leveraging linked open data. In Proceedings of the 7th ACM
Conference on Recommender Systems, RecSys ’13, pages 85–92, New York, NY,
USA, 2013. ACM.

16. V. C. Ostuni, G. Gentile, T. Di Noia, R. Mirizzi, D. Romito, and E. Di Sciascio.
Mobile movie recommendations with linked data. In Human-Computer Interaction
& Knowledge Discovery @ CD-ARES’13, IFIP International Cross Domain Con-
ference and Workshop on Availability, Reliability and Security, CD-ARES 2013.
Springer, 2013.

17. M. J. Pazzani and D. Billsus. The adaptive web. chapter Content-based Recom-
mendation Systems, pages 325–341. Springer-Verlag, Berlin, Heidelberg, 2007.

18. L. Peska and P. Vojtas. Using linked open data to improve recommending on
e-commerce. In 2nd International Workshop on Semantic Technologies meet Rec-
ommender Systems & Big Data (SeRSy 2013). CEUR-WS, 2013.

19. J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, New York, NY, USA, 2004.

20. N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borg-
wardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12:2539–2561, Nov.
2011.

