
Building a relatedness graph from Linked Open Data: a
case study in the IT domain

Tommaso Di Noia, Vito Claudio Ostuni, Jessica Rosati,
Paolo Tomeo, Eugenio Di Sciascio

Polytechnic University of Bari

via E. Orabona, 4 – 70125 Bari, Italy

Roberto Mirizzi

Yahoo! Inc.

701 First Avenue – Sunnyvale, CA 94089 USA

Claudio Bartolini

HP Labs
1501 Page Mill rd. – Palo Alto, CA 94304 USA

Abstract

The availability of encyclopedic Linked Open Data (LOD) paves the way to
a new generation of knowledge-intensive applications able to exploit the infor-
mation encoded in the semantically-enriched datasets freely available on the
Web. In such applications, the notion of relatedness between entities plays an
important role whenever, given a query, we are looking not only for exact an-
swers but we are also interested in a ranked list of related ones. In this paper
we present an approach to build a relatedness graph among resources in the
DBpedia dataset that refer to the IT domain. Our final aim is to create a useful
data structure at the basis of an expert system that, looking for an IT resource,
returns a ranked list of related technologies, languages, tools the user might
be interested in. The graph we created is a basic building block to allow an
expert system to support the user in entity search tasks in the IT domain (e.g.
software component search or expert finding) that goes beyond string matching
typical of pure keyword-based approaches and is able to exploit the explicit and
implicit semantics encoded within LOD datasets. The graph creation relies on
different relatedness measures that are combined with each other to compute a
ranked list of candidate resources associated to a given query. We validated our
tool through experimental evaluation on real data to verify the effectiveness of

Email addresses: {tommaso.dinoia, vitoclaudio.ostuni, jessica.rosati,

paolo.tomeo, eugenio.disciascio}@poliba.it (Tommaso Di Noia, Vito Claudio Ostuni,
Jessica Rosati,
Paolo Tomeo, Eugenio Di Sciascio), robertom@yahoo-inc.com (Roberto Mirizzi),
claudio.bartolini@hp.com (Claudio Bartolini)

Preprint submitted to Elsevier September 4, 2015

the proposed approach.

Keywords: Relatedness graph, Linked data, DBpedia

1. Introduction

The emergence of the crowd computing initiative has brought on the Web
a new wave of tools enabling collaboration and sharing of ideas and projects,
ranging from simple blogs to social networks, as well as software platforms and
even mashups. However, when these web-based tools reach the “critical mass”
one of the problem that suddenly arises is how to retrieve content of interest
from such rich repositories. As a way of example, we may refer to a platform to
share software components, where programmers can publish APIs and mashups.
When a user uploads a new piece of code, they tag it so that the component
will be later retrievable by other users. Components can be retrieved through a
keywords-based search or browsing across categories, most popular items or new
updates. Most of the current systems usually rely on text matching between
a search query and the textual description of a resource or a set of associated
tags. A match is found when keywords, or patterns of keywords expressed in
the query appear also in the description associated to the resource. However,
text-based approaches suffer from the innate problems of ambiguity of natural
language (Resnik, 1999). Even if the query and the resource descriptions are
somehow structured, the same issues persist. In particular, one of the biggest
deficiency in these approaches is their inability to capture the meaning of terms
expressed both in the query and in the description, and the semantic relations
between such terms. As an example, let us consider some cases where systems
based exclusively on text analysis fail, with a particular emphasis on the IT
domain:

• Both SVM and Support Vector Machine refer to the same Machine Learn-
ing algorithm. A textual approach by itself is not able to deal with syn-
onymy.

• Ubuntu and Debian are two Linux distributions, but for a text-based sys-
tem there is no way to understand how they are related.

• PHP and MySQL are two different technologies but strongly related with
each other. Indeed, MySQL is the de facto standard DBMS used when
developing PHP applications.

• Java is an Object-oriented programming language. The relation isA is
pretty common when modelling knowledge domains. However, algorithms
that are purely based on keywords cannot understand it.

The previous examples stress once more the importance of capturing semantic
relations among entities, and of being able to identify (semantically) related
resources (together with a relatedness value).

2

In this paper we show how to tackle such problems by considering entities and
their associated semantics instead of simple keywords. In particular, we demon-
strate that by leveraging knowledge bases which are freely available in the Web
of Data we can compute the relatedness between concepts belonging to the IT
(Information Technology) domain.

In fact, the notion of relatedness is wider than that of similarity. While
the latter refer to specific classes of objects (the class of databases, the class of
programming languages, etc.), the former refers to the whole knowledge space
(database and programming languages, etc.). By remaining in the IT domain,
if we consider MySQL and PostgreSQL we may say if they are similar or not as
they are two DBMSs. On the other hand, if we consider MySQL and PHP we
cannot state anything about their similarity but we can say if they are related
with each other.

In this work we present semantic-aware measures to evaluate the relatedness
values between IT concepts. Using these measures, we then build a graph
where nodes are IT concepts (programming languages, databases, technologies,
frameworks, etc.) and edges between nodes indicate they are related with each
other. We also associate a numerical label to each edge that represents the
relatedness value between two nodes. Having a tool able to measure and evaluate
how much two resources are related with each other, is a key factor in the design
and development of an expert system able to foster the process of selecting those
resources semantically related (to different extents) to the ones that the user is
looking for. Indeed, one of the main tasks an expert system must be able to
cope with is that of supporting human users in decision-making processes such
as “help me in finding those items better corresponding to my needs”. Within a
knowledge space, encoding the notion of relatedness among resources as a graph
may, for instance, allow an expert system to: (i) support the users in ranking
those resources which relate to the ones they are interested in; (ii) guide the users
through an exploratory browsing (Marchionini, 2006) of the knowledge space by
following links whose semantics represents the relatedness degree between the
explored nodes.

Our graph is built by leveraging and combining statistical knowledge ob-
tained from the Web and semantic knowledge extracted from the encyclopedic
knowledge base DBpedia1. We adopt an approach based on machine learning
to effectively combine such information. The approach we present here builds
on top of (Mirizzi et al., 2010). Nevertheless, there are many differences and
improvements. First of all, they rely on a very expensive, from a computational
point of view, process for extracting relevant resources from DBpedia. It consid-
ers a continuous interaction between the graph exploration and the computation
of Web-based conditional probabilities. Moreover, they manually combine dif-
ferent features in a naive way instead of automatically combining them as we
propose here.
The novel contributions of this work are listed in the following:

1http://dbpedia.org

3

http://dbpedia.org

• proposal of a measure for finding the relatedness of concepts in the IT
domain, based on statistical, textual and semantic analysis combined via
both a Learning to Rank (Liu, 2009) (LTR) and a data fusion (Nuray and
Can, 2006) approach;

• construction of a relatedness graph for IT concepts on top of DBpedia;

• experimental evaluation of the approach on real data extracted from job
posts.

The remainder of this paper is structured as follows. In the next section
we give a brief overview of the Semantic Web technologies we adopt in our
approach. In Section 2 we describe the advantages of using semantic knowledge
bases and we provide information about DBpedia. The relatedness measure
between IT terms and the graph building are detailed in Section 3. In Section
4 we present the results of the evaluation of our approach. Related work is
discussed in Section 5. Conclusion and Future work conclude the paper.

2. Linked Data as a knowledge source in the IT domain

If we wanted to build an expert system able to catch relatedness between IT
technologies and tools we would have needed a way to capture the meaning be-
hind keywords in order to overcome the issues of text-based approaches. Indeed,
in this knowledge-intensive scenario, detailed information about entities plays a
fundamaental role. During the last few years, the Web has been evolving in the
so called Web of Data where the main actors are no more pages identified by a
URL but resources/data identified by a URI. In this transformation process the
Linked Open Data (LOD) (Bizer et al., 2009a) initiative has been a first calls
citizen. The Linking Open Data community project started in 2007 with the
goal of augmenting the current Web with data published according to Semantic
Web standards. The idea is to use RDF2 to publish various open datasets on the
Web as a vast decentralized knowledge graph, commonly known as the LOD
cloud. As of today, several dozen billion RDF triples are freely available covering
diverse knowledge domains and tightly connecting different datasets with each
other.
DBpedia. One of the most popular datasets in the LOD compass is DBpedia
(Bizer et al., 2009b). It is a community effort to extract structured information
from Wikipedia and make it freely accessible as RDF triples. This knowledge
base currently describes 4 million resources, out of which 3.22 million are clas-
sified in a consistent ontology3. Its SPARQL endpoint4 allows anyone to ask
complex queries about such resources. Each element in DBpedia is identified
by its own URI in order to avoid ambiguity issues. For example, the pro-
gramming language Java is referred to as the resource identified by the URI

2See Appendix A for a quick overview on RDF and SPARQL.
3http://wiki.dbpedia.org/Ontology
4http://dbpedia.org/sparql

4

http://wiki.dbpedia.org/Ontology
http://dbpedia.org/sparql

dbpedia:Java (programming language), whereas the software platform Java
is identified by the URI dbpedia:Java (software platform). The resource
dbpedia:Java (disambuigation) describes all the possible meanings for the la-
bel Java thanks to the property dbpedia-owl:wikiPageDisambiguates. Simi-
larly, both the URI dbpedia:Svm (machine learning) and the analogous URI
dbpedia:Support vector machine refer to the same Machine Learning algo-
rithm, hence to the same resource. In DBpedia this relation is captured via the
property dbpedia-owl:wikiPageRedirects that connects the former to the
latter entity.

Compared to other hierarchies and taxonomies, DBpedia has the benefit
that each term/resource is endowed with a rich textual description via the
dbpedia-owl:abstract property and at least one textual label via rdfs:label.
The value associated to dbpedia-owl:abstract is a string containing the text
before the table of contents (at most 500 words) of a Wikipedia page, while the
property rdfs:label contains the title of the Wikipedia page. The multilin-
gual nature of Wikipedia is reflected in the values of dbpedia-owl:abstract

and rdfs:label. In fact, given a DBpedia URI, we may have a description and
a label for each language available in the corresponding Wikipedia page. This
is particularly interesting when one wants to build a tool fed by the information
represented in DBpedia since it allows the development of natively multi-lingual
applications. DBpedia also maps hypertextual links between Wikipedia pages
by the property dbpedia-owl:wikiPageWikiLink. For any link connecting a
Wikipedia document di to another Wikipedia document dj , DBpedia asserts a
corresponding dbpedia-owl:wikiPageWikiLink from ui to uj , where ui and
uj are the DBpedia URIs corresponding to the Wikipedia pages di and dj , re-
spectively. Wikipedia authors organize articles by topics, clustering them into
categories, with the purpose of grouping together articles on related topics. Cat-
egories may contain several subcategories, i.e., categories that are more specific
than their parents. In DBpedia, the relations between categories and articles are
maintained by using the Dublin Core Metadata Element Set5 (often referred
to as DCTERMS) and the Simple Knowledge Organization System6 (SKOS) vo-
cabularies. In particular, the dcterms:subject property relates a resource to its
corresponding Wikipedia category, while the skos:broader property links a cat-
egory to its super-categories. For example, the resource dbpedia:Java (programming language)

is connected to the category dbpedia:Category:Object-oriented programming languages

by means of the property dcterms:subject. Similarly, the specific category
dbpedia:Category:Object-oriented programming languages is connected to
its more general category dbpedia:Category:Programming languages by means
of the property skos:broader. It is worth noticing that category-based infor-
mation, although not very rigorous from an ontological point of view, is a very
useful tool to group together resources in an automated way. Moreover, the
categorization of resources is very rich and fine grained. Finally, the rdf:type

5http://purl.org/dc/terms/subject
6http://www.w3.org/2004/02/skos#

5

http://purl.org/dc/terms/subject
http://www.w3.org/2004/02/skos#

property is used to assign a resource to a class, as defined in the DBpedia On-
tology. For example, the resource dbpedia:Java (programming language) is
an instance of the class dbpedia-owl:ProgrammingLanguage. This latter is
rdfs:subClassOf the class dbpedia-owl:Software. We observe that the lack
of depth in the hierarchical structure of the DBpedia ontology in its current
version does not allow for precise and accurate classification of RDF entities.

DBpedia changes as Wikipedia changes, resulting in a continual updates of
its triples not requiring human intervention.

In summary, the main advantages of leveraging LOD datasets as DBpedia

in knowledge-based applications are:

• a huge amount of structured information on heterogeneous knowledge do-
mains freely available and ready to be processed;

• no ambiguity issues typical of keywords thanks to item representations by
unique identifiers (URIs);

• classification of resources via both categories and ontology classes;

• Semantic Web standards to query the knowledge base;

• rich multi-domain and multi-language data;

• avoidance of version control issues due to the continual synchronization
with Wikipedia.

3. Computing a semantic relatedness graph in the IT domain as a
ranking problem

As argumented in Section 1, in the IT domain, very often it is fundamen-
tal to understand both if and how much two entities relate with each other.
Relatedness is a more general concept than similarity (Resnik, 1995). Let us
clarify this with an example. If we consider the two DBpedia entities Django7

and Python8, the relation between them is that the former (a web framework),
is developed by using the latter (a programming language). Obviously, the two
entities are related with each other even if they are not similar. As another
example, let us consider the two resources Java9 and C++10. They are related
with each other because they are both object-oriented programming languages.
In this case they are both somehow similar and related.

Computing relatedness between pairs of resources can be a very time-consuming
task as it often requires not just pure content-based information (as text descrip-
tions) but also data coming from external sources (as number of incoming and

7http://dbpedia.org/resource/Django_(web_framework)
8http://dbpedia.org/resource/Python_(programming_language)
9http://dbpedia.org/resource/Java_(programming_language)

10http://dbpedia.org/resource/C++

6

http://dbpedia.org/resource/Django_(web_framework)
http://dbpedia.org/resource/Python_(programming_language)
http://dbpedia.org/resource/Java_(programming_language)
http://dbpedia.org/resource/C++

outcoming links for a Web page). This is the main reason why the computation
is usually done offline and relatedness results are stored in specific data struc-
tures such as (knowledge) graphs. They are labelled graphs where the label of
an edge indicates how much two connected nodes are related with each other.

The semantic relatedness graph we build, with reference to the IT domain,
exploits the knowledge encoded in DBpedia both to identify entities in a unique
way and to compute the related nodes based on a neighbourhood semantic ex-
ploration. In our setting we formulate the relatedness measure as a ranking
problem. Given a resource that we consider as query, we rank the most related
resources with respect to it. Specifically (see Section 3.2), we combine different
ranking features by adopting either a Learning to Rank (Liu, 2009) or an un-
supervised data fusion approach (Nuray and Can, 2006). The ranking features
come from different knowledge sources:

• DBpedia graph-based ranking;

• Wikipedia text-based ranking;

• Web-based ranking.

The rationale behind this combination is to obtain a robust measure leveraging
strengths and mitigating weaknesses of each feature. In particular:

• the DBpedia graph-based ranking allows us to exploit explicit semantic
connections between resources/skills, but they could not be enough to
assess the relatedness between resources;

• the textual approach adopted in the Wikpedia text-based ranking allows
the system to discover connections between resources based on common
keywords, but the meaning behind such keywords is not exploited;

• the Web-based ranking provides a statistical hint about the relatedness be-
tween resources which bases on their popularity and on their co-occurrence
on the Web, but it lacks of an explicit semantics.

Our relatedness graph is a directed labelled graph represented by the 3-tuple
G = 〈S,E,L〉 where S is the set of vertices, E represents the set of directed
edges between pair of nodes in S and L = {1, . . . , N} is the set of labels we
assign to edges in E. Given two nodes sq (for query) and sk connected by a
directed edge eq,k, the label lq,k indicates the ranking position of sk in the list
of resources related to sq. As the notion of relatedness is symmetric, for each
pair sq and sk we also have an edge ek,q whose label lk,q states the position of
sq in the list of resources related to sk. In Figure 1 we show an example of the
relatedness graph we build. There, we see that s2 is ranked as 1 in the list of
resources related to s1 while it is ranked as 6 in the list of s3. Moreover, we
have s1 ranked as 2 for s2.

In order to build G we first retrieve from DBpedia all the entities related to
the IT domain thus representing the set of vertices S. Then, for each sq ∈ S
we identify a list ~s = 〈sk | with k = 1, . . . ,M〉 of related entities. The set E is

7

Figure 1: An example of a relatness graph in our framework.

composed by all the edges eq,k going from sq to each element sk ∈ ~s. Finally,
we assign a label lq,k ∈ L to eq,k that correspond to the position (ranking) of
sk in the list ~s.

ITJobsWatch. The model we present, needs some parameters to be set ei-
ther in the computation of features values and while selecting relevant resources
from DBpedia. To train the model we adopted a supervised approach by ex-
ploiting ITJobsWatch11 as an external data source for obtaining ground truth
relatedness values. ITJobsWatch is a website that provides a detailed board
of the UK information technology job market. Data are continuously updated
from multiple IT recruitment websites. The purpose of the project is to present
a compact and accurate snapshot of the job market conditions in the UK. In
particular, the website allows users to: (1) know what IT skills are requested
on the job market for certain job titles, and in what measure, (2) determine the
average salary associated to IT skills, (3) discover how IT skills are interrelated
with each other. For the purpose of our work, the latter aspect is the most
interesting one. In fact, on ITJobsWatch each skill is associated with a ranked
list of related skills. Here, the notion of relatedness between the two skills sq
and sk derives from their co-occurrence within job posts: the percentage of IT
job posts within the UK citing skill sq that also mentioned skill sk, during a
time frame of six months. For example, if we look at the skills related to Java12,
we find Spring and J2EE ranked in the first ten positions, with a relative co-
occurrence value of 23.31% and 19.54%, respectively. In other words, on the
average, every 100 job posts citing Java, about 23 also cite Spring and 20 cite
J2EE. Being these ranked lists obtained from real job posts, they allow us to
get an accurate picture of job demand.

11http://www.itjobswatch.co.uk
12http://www.itjobswatch.co.uk/jobs/uk/java.do, page accessed on February 11, 2014.

8

http://www.itjobswatch.co.uk
http://www.itjobswatch.co.uk/jobs/uk/java.do

3.1. Collecting IT resources via DBpedia exploration

As we said before, in order to build the graph G, the first step is to identify
the set of vertices S, i.e. the entities belonging to our knowledge domain. In
our approach, we collect them by extracting from DBpedia all the resources
which are relevant to the IT domain through the exploration of the underlying
RDF graph via SPARQL queries. In particular, the process starts by selecting
a set SN of initial resources (we call them seed nodes) belonging to the IT
domain (e.g., some programming languages, some databases, etc.) from the set
DB representing all the DBpedia resources. Then, SPARQL is used to extract
from DBpedia the resources related to each seed. Given a set of seeds sn ∈
SN we select the set C of the most relevant categories13 connected to sn via
dcterms:subject and then we extract all the resources that belongs to each
category c ∈ C. In order to compute how relevant a category is with respect to
SN we use the information content I(c) (Ross, 1976) associated to each c ∈ C
and we consider only those categories whose I(c) value is greater or equal than
the average. More formally, the set of relevant categories for the domain is
defined as

C̃ =

{
c ∈ C | I(c) ≥

∑
c∈C I(c)

|C|

}
where the information content I(c) associated to the category c is computed as

I(c) = −log2pc

being pc the probability that c classifies elements belonging to SN .

pc =
|{sn dcterms:subject c | sn ∈ SN}|
|{s dcterms:subject c | s ∈ DB}|

The set S of vertices can then be formally defined as

S = {s | s dcterms:subject c ∧ c ∈ C̃}

If we consider, for instance the set SN = {dbpedia:PHP, dbpedia:MySQL,
dbpedia:Oracle Database, dbpedia:F Sharp (programming language),
dbpedia:JavaScript, dbpedia:C++} we obtain the set C̃ composed by the
categories represented in Table 114. We observe that by considering C̃ instead
of the whole C, we filter out non relevant categories such as:
dbpedia:Category:American inventions

dbpedia:Category:Cross-platform free software

dbpedia:Category:Filename extensions

13 While extracting relevant elements, we do not consider ontological information encoded
via rdf:type statements because, as discussed in Section 2, the DBpedia ontology is very
shallow thus allowing a very coarse grained classification of resources.

14From the set C we filtered out all those categories containing a year such as
dbpedia:Category:Programming languages created in 1983. They can be easily identified
as their name follows a precise pattern.

9

dbpedia:Category:Client-server database management systems

dbpedia:Category:Web programming

dbpedia:Category:Linux database-related software

dbpedia:Category:High-level programming languages

dbpedia:Category:Object-based programming languages

dbpedia:Category:Algol programming language family

dbpedia:Category:ML programming language family

dbpedia:Category:Class-based programming languages

dbpedia:Category:MySQL

dbpedia:Category:Statically typed programming languages

dbpedia:Category:Prototype-based programming languages

dbpedia:Category:.NET programming languages

dbpedia:Category:JavaScript

dbpedia:Category:Relational database management systems

Table 1: An example of C̃ computed from a small set of seed nodes. Categories are listed in
decreasing order of I(c).

In our setting, we selected SN as the set of all the resources extracted
from ITJobsWatch and mapped to DBpedia. In particular, with respect to
ITJobsWatch classification, we concentrated on Processes & Methodologies, Ap-
plications, Libraries, Frameworks & Software Standards, Programming Lan-
guages, Database & Business Intelligence, Development Applications and Sys-
tems. At the end of the mapping process we had 941 IT resources mapped to
DBpedia.

Once we compute S by performing all the queries for each seed node, we ob-
tain the vocabulary of IT resources needed to build the relatedness graph and we
are then ready to compute the relatedness between pairs of IT resources. A basic
approach to create the knowledge graph could be: for each pair of nodes belong-
ing to the IT vocabulary S compute a relatedness value. The simple approach is
not very efficient since we also check nodes with a very low (almost zero) relat-
edness value, such as HTML and Object-Orientd Programming. Our hypothesis
is that related nodes are connected within the DBpedia graph via a path up to
a maximum length D and nodes connected by a path whose length is greater
than D are not semantically related. Moreover not all the paths in DBpedia are
relevant in order to discover relatedness relations within the IT domain. There
are properties that are used more frequently in the domain of interest, such
as dbpedia-owl:programmingLanguage or dbpedia-owl:computingPlatform.
Therefore, we initially looked for the set of most frequent properties used with
the nodes in S and then, based on these properties we explored DBpedia to
evaluate D. Given a node sq ∈ S, we evaluate the occurrence of properties
used as predicate in the RDF triples having sq either as subject or as object. We
collected a total of 266 different properties. As shown in Figure 2, there are
many properties with a very low occurrence value (195 properties out of 266
occurred less than 10 times). For the exploration of the DBpedia graph we then

10

Figure 2: Distribution of DBpedia properties in the IT domain

http://dbpedia.org/ontology/operatingSystem

http://dbpedia.org/ontology/programmingLanguage

http://dbpedia.org/ontology/computingPlatform

http://dbpedia.org/ontology/industry

http://dbpedia.org/ontology/genre

http://dbpedia.org/ontology/wikiPageWikiLink

http://purl.org/dc/terms/subject

http://www.w3.org/2004/02/skos/core#broader

Table 2: Properties used to explore the DBpedia graph

considere as relevant: (i) the top 5 (see Figure 3) extracted properties; (ii) the
dbpedia-owl:wikiPageWikiLink; (iii) the properties used to encode category-
based information, i.e., dcterms:subject and skos:broader. The whole set
of adopted properties is represented in Table 2. From now on, we will refer to
this set as P . The computation of the maximum exploration depth D relies on
some information coming from ITJobsWatch. In particular, for each resource
sITJobsWatchq ∈ SN we retrieved the Top 30 Related IT Skills15. Then we consider
all the resources sITJobsWatchk whose relative co-occurrence value is greater than
the average value and we check in DBpedia the length of the shortest paths
between the corresponding resources sITJobsWatchq and sITJobsWatchk by considering
only those paths composed by properties in P . The distribution of the shortest

15See http://www.itjobswatch.co.uk/jobs/uk/django.do for an example.

11

http://www.itjobswatch.co.uk/jobs/uk/django.do

Figure 3: Top-10 most frequent properties in the IT domain

hops number of shortest paths

1 840
2 2677
3 1727
4 124

Table 3: Distribution of the shortest paths in DBpedia between entities retrieved from
ITJobsWatch considering properties in P

paths is shown in Table 3. We observe that in the worst case we have a path
of length 4. We thus set D = 4 as we consider it as the maximum number of
hops in the DBpedia graph needed to connect two resources belonging to the IT
domain. Hence, for each resource sq ∈ S we perform a depth-first exploration of
the graph and we save in a list ~s all the nodes reachable in at most 4 hops. We
call these nodes neighbours of sq. When the exploration stops we can eventually
compute the relatedness values between sq and all the elements in ~s by means
of the different ranking features as described in the following. It is notewor-
thy that the exploration is performed by following only the set of properties P
shown in Table 2. As we are interested in relatedness between pairs of resources
we consider the DBpedia graph as undirected. For example, if we consider the
resource dbpedia:PHP ∈ S and the property dbpedia-owl:wikiPageWikiLink

∈ P , the corresponding query is

SELECT DISTINCT ?r

WHERE {

{dbpedia:PHP dbpedia-owl:wikiPageWikiLink ?r .}

12

Figure 4: Spreading activation node model.

UNION

{?r dbpedia-owl:wikiPageWikiLink dbpedia:PHP}

}

At the end of the exploration, for our dataset, we have lists ~s whose length goes
from 4 to 127. This means that for each resource sq we will have at least 4 and
at most 127 related nodes in the final knowledge graph.

3.2. Ranking features

As introduced at the beginning of this section, we compute the final rank by
combining diverse ranking features. A graph-based, a text-based and a Web-
based ranking feature are combined to return the aggregate ranking list ~saggr
computed with respect to a resource sq used as query.

3.2.1. Graph-Based ranking

The graph-based ranking is based on the spreading activation algorithm
(Crestani, 1997).

Spreading activation has a history of applications in cognitive psychology,
artificial intelligence and, more recently, in information retrieval. The spreading
activation theory of human semantic processing was first proposed by Quillian
(Quillian, 1968). This model was introduced for semantic networks of inter-
linked concepts which contain the basic elements we find today in RDF graphs
(as the one represented by DBpedia). The processing technique behind spread-
ing activation is rather simple, consisting of one or more propagated impulses
and a termination check. In addition, the model can implement propagation
decays and constraints on the spreading activation process. The process starts
with an initial energy impulse that propagates from the input query node – an
IT resource in our case – to its neighborhood nodes. Iteratively, these nodes
propagate part of their energy to their neighborhood nodes till a convergence
criterion is reached. Alternatively to or in combination with the convergence
criterion, a maximum number of iterations can be set as stop criterion.

More in detail, a generic node sk receives energy impulses from its in-links,
then it accumulates, processes and propagates this energy to its out-links follow-
ing the model illustrated in Fig. 4. The values xi1 , .., xin represent the energy

13

impulses coming from the in-links that could potentially activate the current
node. The complete model also takes into account a decay factor (usually an
exponential function) and a step activation function. So, the actual activation
energy is x = e−α ·

∑
j xij . If x is greater or equal to a threshold value T

associated to the step function then the node propagates x by equally splitting
the energy among the out-links. The aim of the decay factor is to favour closer
connections to farther ones over the network in case the exploration goes deep
in the network. The resulting output energy values yo1 , .., yom become input
energy for the next nodes while the output value x represents the relatedness
between the input query node sq and the current node sk. The process termi-
nates either when there are no active nodes which propagate their energy to the
followers or when a maximum number MAX of iterations is reached.

In our implementation, based on the results related to the longest short
path presented in the previous section, we adopt a spreading activation with a
maximum number of iteration MAX = D. The maximum distance covered by
energy coming from sq to reach sk is then 4. As this is a quite small value we
assume the decay factor as negligible and set α = 0. Since we adopt a spreading
activation with a maximum number of iterations, we chose to set the activation
threshold T = 0. Hence, the final formulation of the relatedness score obtained
by the spreading activation referred as sa(sq, sk) is:

sa(sq, sk) =
∑
j

xij

where xij is the portion of energy starting from sq and arriving in sk.

3.2.2. Text-based ranking

In text-based ranking we exploit text and link analysis in DBpedia. in partic-
ular, we look at the objects of the triples involving the properties dbpedia-owl:abstract
and dbpedia-owl:wikiPageWikiLink, respectively. We remember that the for-
mer is a datatype property whose object is a string containing the first paragraph
of the corresponding Wikipedia page. The latter is an object property whose ob-
ject is a DBpedia resource that gets an incoming hyperlink on the corresponding
Wikipedia page.

Given two DBpedia nodes sq and sk, we check if the label of node sq is
contained within the abstract of node sk, and vice versa. The main assumption
behind this check is that if a DBpedia resource name appears in the abstract of
another DBpedia resource, then it is reasonable to think that the two resources
are related with each other. Specifically, we check if the rdfs:label of sq is
contained within the dbpedia-owl:abstract of sk (and vice versa). In case
the value of rdfs:label is composed by more than one single word, we also
consider all possible n-grams.

Let Q and K be the number of words composing the label of sq and sk,
respectively. Let us denote by Nq the number of n-grams composing the label
of sq which are also in the abstract of sk and by Nk the number of n-grams
composing the label of sk which are also in the abstract of sq. We define the

14

text-based similarity between sq and sk as:

abstract(sq, sk) =
1

2
·

(
Nq∑Q
i=1 i

+
Nk∑K
i=1 i

)

We see that abstract(sq, sk) ∈ [0, 1].
Similarly to what we do with labels and abstracts, we also check if the

Wikipedia page of resource sq has an outgoing link to the Wikipedia page of re-
source sk, and vice versa. If DBpedia contains the RDF triple sq dbpedia-owl:wikiPageWikiLink
sk (and/or sk dbpedia-owl:wikiPageWikiLink sq), we assume a stronger re-
lation between the two resources. We evaluate the strength of the connection
as follow:

wiki(sq, sk) =

0, no dbpedia-owl:wikiPageWikiLink between sq and sk in DBpedia

1, sq dbpedia-owl:wikiPageWikiLink sk exists in DBpedia

1, sk dbpedia-owl:wikiPageWikiLink sq exists in DBpedia

2, both sq dbpedia-owl:wikiPageWikiLink sk and
sk dbpedia-owl:wikiPageWikiLink sq exist in DBpedia

3.2.3. Web-based ranking

Given two DBpedia resources sq and sk, we verify how many Web pages
contain (or have been tagged by) the value of the rdfs:label associated to sq
and sk. Then, we compare these values with the number of pages containing
(or tagged by) both labels. The Web pages count is obtained by querying the
following information sources: Google, Bing and Delicious. We select more
than one search engine because we do not want to bind the result to a specific
algorithm. Moreover, we want to rank a resource not only with respect to the
popularity of related pages on the Web, but also considering the popularity of
such resources among users (using Delicious, a popular social tagging system).
In this way we are able to combine two different perspectives on the popularity
of a resource: the one related to the words occurring within Web documents,
the other one exploiting the social nature of the current Web.

We compute the relatedness of two resources sq and sk with respect to a
given external information source σ ∈ {G,B,D}16 as:

webσ(sq, sk) =
1

2
·
(
dsq,sk
dsq

+
dsq,sk
dsk

)σ
where dsq and dsk represent the number of documents containing (or tagged
by) the rdfs:label associated to sq and sk respectively, and dsq,sk represents
how many documents contain (or have been tagged by) both the label of sq and
sk. The formula is symmetric and the returned value is in [0, 1]. It is note-
worthy that the first term in webσ(sq, sk) represents the conditional probability

16G is used to represent the information source Google, B for Bing and D for Delicious.

15

pσ(sk|sq) while the second is pσ(sq|sk).
Let us clarify this relatedness measure by means of an example and consider sq =
dbpedia:Python (programming language) and sk = dbpedia:Django (web framework).
The rdfs:label for sq is Python (programming language) and for sk is Django
(web framework). On Google17, dsk = 2e7 and dsq = 3e6. For the conjunct
query Python (programming language) Django (web framework), dsq,sk = 1e6.
Given these values, it is straightforward to compute the score
webG(dbpedia:Python (programming language), dbpedia:Django (web framework)).

3.3. Ranking features aggregation

Once we compute the different ranking features, we aggregate them to ob-
tain an effective and accurate ranking of IT resources. Here we present two
approaches for feature aggregation: the one based on Learning to Rank (Liu,
2009), the other exploiting techniques coming from the Data Fusion field (Nuray
and Can, 2006). The former employs a supervised approach to learn a ranking
function, in particular we use the Ranking SVM algorithm (Joachims, 2002).
The latter is a unsupervised method based on a popular voting technique called
Borda count (Dwork et al., 2001).

query res sa abstract wiki webG webB webD y
Java Spring 0.65 0.5 2 0.21 0.13 0.23 0.33
Java SQL 0.58 0.2 0 0.45 0.75 0.35 0.24
Java Oracle 0.43 0.33 1 0.32 0.80 0.65 0.23
Java J2EE 0.45 0.75 1 0.22 0.13 0.19 0.20

Table 4: An example of the structure of the dataset for the query Java.

3.3.1. Ranking SVM algorithm

The goal of using Learning to Rank in our approach is to automatically
learn a ranking function from training data to obtain a model able to sort IT
resources according to their relatedness with respect to a query. Training data
is represented as a set of input-output pairs (~xsq,sk , ysq,sk), where ~xsq,sk ∈ RN
(N is the number of features) is a feature vector (Fuhr, 1989) that for each
single feature encodes the match between the query sq and the IT concept sk,
while ysq,sk is a rank label, such as the rank position or relevant/irrelevant in
case of binary data. Table 4 shows an example of the structure of the dataset
just described. In this case sq – the query concept – is the resource Java and
the IT concepts to rank are: Spring, SQL, Oracle, J2EE. Each component of
~xJava,sk encodes the relatedness between each resource and Java. For example
for sk = Spring we have:

~xJava,Spring = 〈0.65, 0.5, 2, 0.21, 0.13, 0.23〉

17Results accessed on Feb 9th, 2014.

16

where the value 0.65 represents the relatedness for the pair (Java, Spring) ob-
tained with the spreading activation method, and the other values refer to the
other features, as detailed in Section 3.2. The last column represents the relat-
edness score ysq,sk given by ITJobsWatch in the Top 30 Related IT Skills and
we consider it as ground truth data. We recall that we are not interested in the
relatedness score in itself but in the ranking induced by it.

In our work we adopt Ranking SVM (Joachims, 2002), that is a pairwise
approach to the Learning to Rank problem. The basic idea of Ranking SVM is
to formalize Learning to Rank as a problem of binary classification on instance
pairs, and then to solve the problem using Support Vector Machines.
The goal is to optimize a scoring functionf(~xsq,sk) = ~w·~xsq,sk that maps ~xsq,sk to
a labelling value ysq,sk indicating the ranking score. If f(~xsq,s) > f(~xsq,sj), then
s should be ranked higher than sj for the query sq (or equivalently ysq,s > ysq,sj).

Specifically, Ranking SVM minimizes the number of discordant pairs resolv-
ing the following optimization problem:

min
~w,ξq,i,j

1

2
~w · ~w + Γ

∑
ξq,i,j

~w · (~xsq,s − ~xsq,sj) ≥ 1− ξq,i,j if ysq,si > ysq,sj

∀q∀i∀j : ξq,i,j ≥ 0

where Γ is a parameter that allows us to trade-off margin size against training
error and ξq,i,j are slack variables introduced to approximate the solution. It
can be shown that the problem is convex, has no local optima and is equivalent
to an SVM classifier on pairwise difference vectors ~xsq,s − ~xsq,sj (Joachims,
2002). In our scenario, the model has been trained by considering, for each
resource sq ∈ SN , the Top 30 Related IT Skills with the corresponding relative
co-occurrence value as ysq,s.

Since the linear function f(~xsq,s) learned is a linear combination of the fea-
ture vectors, this makes it possible to use kernel functions and extend the SVM
algorithm to non-linear retrieval functions. For ranking SVM we used the imple-
mentation SVMRank18 (Joachims, 2006). We tested different kernel functions
and we obtained the best results with the RBF kernel (Schlkopf et al., 1997).

3.3.2. Borda count algorithm

Borda count is a positional method, as it assigns a score corresponding to
the positions in which a candidate result appears within each voter’s ranked list
of preferences, and the candidates are sorted by their total score. An advantage
of positional methods is that they are computationally very easy: they can be
implemented in linear time. Moreover, no training phase is needed.

18http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

17

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

The Borda count works as follows. Each voter ranks a fixed set of c candi-
dates in order of preference. For each voter, the top ranked candidate is given c
points, the second ranked candidate is given c−1 points, and so on. If there are
some candidates left unranked by the voter, the remaining points are divided
evenly among the unranked candidates. The candidates are ranked based on
total points, and the candidate with the greatest number of points wins the
election.

There is a direct analogy between multi-candidate election strategies and the
problem of rank aggregations: in our case, the set of related resources are the
candidates, and the different ranking features are voters expressing preferences
among these candidates. No relevance scores are required, no training data is
required, and the combination algorithm is simple and efficient. In our scenario
considering that a single ranking can have equally preferred candidates, we
adapt the classic Borda count setting. In fact, we give equal points to equally
preferred candidates. If there are i equally preferred candidates starting from
position c − k to c − k − i + 1 we give 1

i

∑i−1
j=0(c − k − j) points to these i

candidates.
Given the query concept sq, the resources ~s = 〈s′, s′′, . . . sc〉 to be ranked

with respect to sq and the set of features X , we compute the points ~βx(sq, ~s) for
each feature x ∈ X and then we sum the corresponding values in the vectors.

borda(sq, ~s,X) =
∑
x∈X

~βx(sq, ~s)

~βx(sq, ~s) =

b′x
b′′x
. . .
bcx

Where b′x, b

′′
x, . . . , b

c
x represent the points assigned to s′, s′′, . . . , sc because of the

feature x. As an example, if we consider the data in Table 4 we have sq = Java,
~s = 〈Spring, SQL,Oracle, J2EE〉, X = {sa, abstract, wiki, webG, webB , webD}
and the corresponding points:

~βsa(Java,~s) =

4
3
2
1

, ~βabstract(Java,~s) =

3
4
1
2

~βwiki(Java,~s) =

4

2.5
1

2.5

 ~βwebG(Java,~s) =

1
2
4
3

~βwebB (Java,~s) =

1.5
1.5
3
4

 , ~βwebD (Java,~s) =

2
1
3
4

18

The final Borda count is then evaluated as:

borda(Java,~s,F) =

15.5
15
14

16.5

4. Evaluation

In order to evaluate the effectiveness of our approach, we compared the
results obtained by our aggregated ranking methods both with the most rele-
vant relatedness metrics we adopt and other two metrics available in the LOD
literature.
Dataset description. We evaluated our approach – and also trained it in
case of the supervised algorithm Ranking SVM – on a dataset extracted from
ITJobsWatch. The dataset is composed by 4,765 relatedness values between
pairs of resources. In particular, there are 535 ranking list with 5 to 10 items.
Tested algorithms. We tested and compared the following relatedness mea-
sures:

• Ranking SVM. It is the supervised algorithm Ranking SVM described
in Section 3.3.1.

• Borda count. It is the unsupervised algorithm described in Section 3.3.2.

• Sum. All the scores coming from the different ranking features as de-
scribed in Section 3.2 are summed.

• Random. The ranking lists are generated randomly. We consider the
Random predictor as baseline.

• Spreading Activation. This is the score obtained considering only the
graph-based rank (sa) (see Section 3.2.1).

• DBpediaRanker. This is the approach presented in (Mirizzi et al., 2010).
Here, only text-based (abstract and wiki) (see Section 3.2.2) and web-
based (webσ) (see Section 3.2.3) ranking features are considered and the
final relatedness is the sum of the two ranking features.

• Web-based. We consider only the ranks obtained with the Web-based
ranking feature (webσ) (see Section 3.2.3).

• LDSD (Passant, 2010). It is a relatedness measure to compute the dis-
tance between pairs of resources in Linked Data, which takes into account
direct and indirect links, both incoming and outcoming.

Evaluation protocol. For the Ranking SVM a 5-cross fold validation has
been used to avoid overfitting. In order to keep results consistent, also the
Borda count and the other algorithms have been evaluated on the 5 test sets

19

fold RankSVM Borda Sum DBpediaRanker LDSD
1 0.3070 0.2502 0.2416 0.2252 0.2343
2 0.3496 0.2304 0.2284 0.2181 0.1853
3 0.3419 0.2892 0.2543 0.2393 0.2194
4 0.3164 0.2520 0.2403 0.2374 0.2312
5 0.3421 0.2396 0.2229 0.2102 0.1899

AVG 0.3314 0.2523 0.2375 0.2260 0.2120

fold sa Random webG webB webD

1 0.1774 -0.0184 0.1693 0.0927 0.2187
2 0.1592 -0.0096 0.1510 0.1550 0.1317
3 0.1900 0.0029 0.2220 0.1693 0.1672
4 0.1416 -0.0354 0.1873 0.1374 0.2468
5 0.2091 0.0238 0.1696 0.1694 0.0702

AVG 0.1755 -0.0073 0.1798 0.1448 0.1669

Table 5: Values of the Spearman’s rank correlation coefficient in the experimental evaluation.

derived from the cross fold validation. Since the different features have different
ranges in a pre-processing step we normalized them to have zero mean and unit
variance. To evaluate and compare the algorithms we used Spearman’s rank
correlation coefficient (Kendall, 1948) ρ:

ρ = 1−
6 ·
∑
i (xi − yi)2

n(n2 − 1)

which is a non-parametric measure of statistical dependence between two vari-
ables x and y. When x and y are monotonically related, the Spearman corre-
lation coefficient is 1 (or -1). On the contrary, a Spearman correlation of zero
means that there is no tendency for y to either increase or decrease when x
increases, hence the two variables are completely uncorrelated. In our scenario
these two variables represent two possible ranks for a given query sq.

For each IT resource sq in the test set we compute the Spearman correlation
coefficient between its ITJobsWatch ranking list and each of the lists obtained
from the algorithms under test. The values represented in Table 5 are the
Spearman correlation coefficients averaged among all the resources in the test
set. On each row we report the results for the 5 test sets derived from the 5-cross
fold validation and the average among the 5 sets.

As expected the Random predictor manifests a Spearman correlation near
to 0. Ranking SVM achieves the best results (ρ = 0.3314). It is also interesting
to note that using the same ranking features, Ranking SVM performs on the
average 0.093 better than Sum and 0.079 better than Borda count. Indeed,
differently from the other algorithms, it is designed to optimize a ranking loss
function defined on misclassification pairs. It is also noteworthy that when the
ranking features are not used together, the results get worse. For example,
LDSD that does not have any Web-based feature is 0.119 lower than RankSVM
and 0.04 lower than Borda count. Similarly, graph-based (sa) or web-based

20

(webσ) features when used alone are below the results achieved by grouping them
together. The differences between the various correlation coefficients expressed
above are statistically significant (p < 0.001) according to the paired t-test. We
also applied the Bonferroni correction (Abdi, 2007) since we performed multiple
comparisons. The results show that a supervised approach like Ranking SVM
is the best solution to aggregate the various features or equivalently combining
the rankings. However, also Borda count, even if not data-driven, outperforms
the other approaches that do not leverage all the available ranking features.
This validates the idea of using different and heterogeneous ranking features
and information sources to mitigate the weakness of each individual features.

5. Related work

Many techniques have been proposed to automatically evaluate the seman-
tic relatedness between words, texts or concepts in a way corresponding closely
to that of human subjects. Most of traditional methods to compute semantic
measures exploit particular lexical sources as dictionaries and corpus or well
structured taxonomies such as WordNet (Miller, 1995). (Rada et al., 1989) pro-
poses a method for computing semantic relatedness considering the number of
edges between two concepts in a semantic network. Specifically, they applied it
to MeSH, a term hierarchy for indexing articles in Medline. Following this idea,
in (Hirst and St Onge, 1998) the authors applied a similar strategy to Word-
Net. (Resnik, 1995) introduces a measure of relatedness for WordNet based
on the notion of information content, that is a value that is assigned to each
concept in a hierachy based on corpus based evidence information. Then, the
relatedness between two concepts is determined by the information content of
the lowest common subsumer of the two concepts in the hierarchy. The main
problem with those methods based on lexical taxonomies such as WordNet is
their limited coverage: for example, as reported in (Strube and Ponzetto, 2006),
WordNet 2.1 does not include many named entities or many specialized terms,
as instead it is needed in the IT domain. The usage of DBpedia and more
generally of LOD datasets, helps to overcome this problem as the information
available within the dataset covers many domains and at the same time receives
periodical updates. This can be considered as a point in favour of the approach
we present here. Referring to ontologies, in (Mazuel and Sabouret, 2008) the
authors present a semantic relatedness measure on ontologies based on the anal-
ysis of object properties between concepts. The basic idea behind their method
is that the concepts can be connected following different kinds of relations. They
first remove the paths semantically incorrect using specific rules and then assign
a weight to each path depending on various contextual information such as the
type of relations. Compared to our approach, in (Mazuel and Sabouret, 2008)
the designer has to assign and semi-automatically check the values assigned to
the paths. In our case, we do not need to manually select any relevant path
or feature to build the relatedness graph. In (Smyth, 2007) an approach which
takes into account individual features of concepts is presented where each par-
ticular feature has its own similarity function. Then, final similarity is obtained

21

as linear combination of the different features where each one is given a different
weight depending on its importance. Although the proposal in (Smyth, 2007)
shares many element with our approach, the authors consider only concepts
within the ontology. Hence, they only work at the schema level. Moreover,
they only consider “semantic” features and do not exploit any other statisti-
cal and textual information as in our case. A completely different approach
based on statistical analysis, namely Latent Semantic Analysis is presented in
(Deerwester et al., 1990). LSA is a well known technique used in Information
Retrieval that leverages word co-ocurrence from large corpus of textual docu-
ments. The main limitation of this technique is that its coverage is restricted to
the corpus used as input. More recently other works have focused on using en-
cyclopedic data sources such as Wikipedia to improve coverage with respect to
traditional methods based on limited vocabularies. Particularly in (Strube and
Ponzetto, 2006) the authors present classic measures adapted to use Wikipedia
instead of WordNet as knowledge source. Another work based on Wikipedia is
found in (Gabrilovich and Markovitch, 2007). They propose a method based on
machine learning techniques to represent words or texts as weighted vectors of
Wikipedia-based concepts. The reported results show higher correlation with
human judgment than (Strube and Ponzetto, 2006). Our abstract feature has
been inspired by these works. The main difference is that we simply rely on
word occurrences and, for this feature, we do not adopt any machine learn-
ing tool. In this way we avoid computational demanding training task while
building the relatedness graph in the preliminary phases. Despite the benefits
deriving from the usage of Wikipedia as background knowledge source such as
its multi-domain and multi-lingual nature, as explained by (Gracia and Mena,
2008), Wikipedia is not able to take into account implicit relationships. In par-
ticular they propose to use the Web as knowledge source. They say that many
terms do not appear together in any Wikipedia page, but most of them can
co-occurr in several web pages, so their implicit relationship could be inferred
by accessing the Web. In (Bollegala and Matsuo, 2007) a similarity measure
combining page counts information with scores obtained from the analysis of
lexico-syntactic patterns extracted from text snippets is proposed. Other web-
based semantic similarity measures can be found in (Chen et al., 2006) and
(Sahami and Heilman, 2006). They also explore text snippets, but without tak-
ing into account page counts as done by (Bollegala and Matsuo, 2007). This
is very similar to what we do with webσ features. Differently from (Bollegala
and Matsuo, 2007) we do not consider only the results returned by Web search
engines but also the information encoded in social data as the one exposed by
Delicious. Moreover, in this case only Web-based metrics are adopted without
considering text-based and graph-based ones. Information theoretic approaches
to compute similarities among terms have been shown to be quite effective by
computing the information content (IC) of concepts from the knowledge pro-
vided by ontologies. These approaches, however, suffer by the coverage offered
by the single input ontology. In (Sánchez and Batet, 2013), the authors propose
an extension to IC-based similarity measures by considering multiple ontologies
in an integrated way. Several strategies are proposed according to which ontol-

22

ogy the evaluated terms belong to. In (Sánchez et al., 2012) the authors present
an ontology-based measure relying on the exploitation of taxonomical features to
compute similarity among words. The problem associated to the lack of mean-
ing in tag-based systems is addressed in (Uddin et al., 2013) where a method
for finding semantic relationships among tags is proposed. The authors consider
not only the pairwise relationships between tags, resources, and users, but also
the mutual relationships among them. In (Lau et al., 2009) an ontology-based
similarity measurement is presented to retrieve the similar sub-problems that
overcomes the problems of synonymity in problem-based case reasoning dur-
ing the case retrieval. Semantic similarity and relatedness measures between
ontology concepts are useful in many research areas. While similarity only con-
siders subsumption relations to assess how two objects are alike, relatedness
takes into account a broader range of relations (e.g., part-of). Computing se-
mantic similarity between ontology concepts is an important issue since having
many applications in different contexts including: Information Retrieval, ontol-
ogy matching, semantic query routing, just to cite a few. In (Pirró and Euzenat,
2010), the authors present a framework, which maps the feature-based model of
similarity into the information theoretic domain. All these ontological methods,
although effective in many cases, require to have a well designed and imple-
mented ontology. While this is the case of domains such as biology, genetics,
etc., there are many domains where the ontologies are not very rich and well
structured and often they just result in a shallow taxonomy.

Referring to the recent LOD initiative, (Passant, 2010) proposes a measure
of semantic distance on Linked Data to identify relatedness between resources.
The author takes into account both direct and indirect connections between
pairs of resources. In the evaluation section we re-implemented this algorithm
and used it for comparison with our approach (see Section 4). Based on the
primary SimRank (Jeh and Widom, 2002), the authors in (Olsson et al., 2011)
take the first steps to embed semantic relationships in similarity computing.
The proposed similarity measure, named SSDM (Structural Semantic Distance
Measure), aims at tailoring the primary SimRank to the RDF data format. As
its name suggests, the measure leverages both structural and semantic informa-
tion of a heterogeneous graph to compute similarity. This makes the measure
well suited for Linked Data. By arguing that employing distance to compute
similarity does not adequately consider all details, the author in (Leal et al.,
2012) introduces proximity: the level that indicates how semantically close two
resources are according to the weight of the predicates on the path connecting
them. The measure considers the weight of edges between nodes, a mapping is
defined to convert a link type into an integer value. More recently in (Leal and
Costa, 2015), the authors propose to apply deep learning techniques (Schmid-
huber, 2015) to compute proximity values between RDF resources. The proposed
approach builds on top of (Leal, 2013) where the implementation and evalua-
tion of the algorithm was presented. An analogous approach is presented in (Yu
et al., 2014) where the authors propose an algorithm to compute recommen-
dation in heterogeneous graphs. The authors in (Vocht et al., 2013) make use
of available computation resources to find paths in structured data. Applying

23

these algorithms to Linked Data can facilitate the resolving of complex queries
that involve the semantics of the relations between resources. An approach is
introduced for finding paths in Linked Data that takes into account the meaning
of the connections and also deals with scalability. An efficient technique com-
bining pre-processing and indexing of datasets is used for finding paths between
two resources in large datasets within a couple of seconds. All these seman-
tic approaches base on graph exploration and path identification and counting
assume the designer already knows all the nodes/entities within the semantic
graph. This is not the case of our approach where we only need to know a set
of seed nodes to explore the dataset and build the relatedness graph. This is
particularly useful in all those situations where the initial knowledge owned by
the designer of the intelligent system is limited to a subset of the actual one.
Moreover, the computation of relatedness values (in our case a ranking value) is
contextual to the exploration. Finally it is worth noticing that, differently from
our approach, a training set is needed in order to compute the relatedness values
between nodes. Moreover, a weight needs to be set for each relevant property
within the selected dataset.

In (Zadeh and Reformat, 2012) a metric for calculating semantic similarity
between two resources based on features, called FuzzySim, is presented. Proper-
ties/predicates are considered as features. Furthermore, it is hypothesized that
each group of properties has a specific influence on the overall similarity. As a
result, the set of properties in an RDF graph is intuitively classified into subsets
according to their level of importance. The similarity between two resources
with regard to all the subsets of properties in the RDF graph is calculated by
combining all sub-metrics using a fuzzy function whose aim is to incorporate
the human judgment of similarity. As for the metrics described previously,
FuzzySim needs to manually assign a value of importance to the (set of) rele-
vant properties in order to classify their importance. This is not the case of our
metric that does not need any manual pre-processing step.

Compared to the approaches proposes in the literature on semantic relat-
edness we may summarize the following points in favour of the approach we
present in this paper:

• The use of DBpedia makes our approach applicable to other knowledge do-
mains. Moreover, even though we exploit the semantics of RDF datasets we
do not only consider the ontological information they encode to compute
relatedness between nodes. This allows our approach ot be used also for
those domain where the underlying ontologyis not very rich or structured.

• We do not rely on a single metric but we combine more than one in order
to exploit the advantages of each of them. Indeed, we adopt an ensemble
of graph-based, Web-based and text-based metrics.

• As for the graph-based metric, we do not need to know all the elements
a priori. We just need an initial set of seed nodes resulting meaningful to
represent the knowledge domain. Starting from them, the spreading acti-
vation algorithm is able to discover new nodes belonging to the knowledge

24

domain which were initially unknown .

• We do not necessarily need any initial dataset already containing related-
ness measures to train our model. All the metrics we propose here do not
require a training step. As for ranking aggregation, the unsupervised ap-
proach for features aggregation based on Borda count is able to compute
relatedness values without the need of a training set.

6. Conclusion and future work

In this paper we have presented an approach to rank LOD resources with a
particular emphasis on the IT domain. The measure we propose makes use of
several ranking features to compute the relatedness between pairs of resources.
In particular, both graph-based, text-based and web-based features have been
exploited to provide effective results. Thanks to the usage of Linked Open Data
datasets, such as DBpedia, our approach is able to capture semantic relations
between resources beyond the possibilities offered by traditional text-based ap-
proaches. We have employed this measure to build a labelled graph of related
concepts. In particular, in this work we focused on concepts belonging to the IT
domain (programming languages, databases, technologies, frameworks, etc.).

The produced graph may represent a key component in the design and de-
velopment of expert systems whose goal is to support the user in selecting items
resulting relevant and related to the ones they might be interested in. In par-
ticular, for the IT domain, an expert systems might guide the user through the
decision-making process of finding technologies and tools which can be associ-
ated, to some extent, to those needed for a specific task. As a way of practical
applications for the proposed approach we may cite at least: expert finding, task-
driven exploratory search for learning, software components selection in complex
system design and development. In expert finding scenarios, the main goal is
to find experts able to cope with a specific task. There are many situation
where an exact matching between the requested skills and the available ones is
not possible. We may think at the allocation of employees within a company
to solve a task for which specific skills are needed. By looking at the CV of
available employees, in case of non-exact match, the company might be inter-
ested in those whose skills are as much related as possible to the requested ones.
As for the task-driven exploratory search for learning use case we may develop
an expert system able to guide the user in a learning process whose aim is to
improve their knowledge on specific technologies and tools needed to solve a
task. Suppose the user is asked to learn PHP to develop a Web portal. Hence,
the expert system may suggest the user to take a look also to MySQL as it is
the most used DBMS when developing PHP projects. The system may also
allow the users to explore related technologies thus making them aware of new
tools that could result useful for the development of the project. Finally, also
software components selection in complex system design and development may
benefit from the availability of an expert system using our relatedness graph
in the IT domain. Indeed, while looking for a specific component, library or

25

API, the system is able to suggest to the user other related components that
may contribute to the final design of a complex system. In case the project
uses Django as the framework for Python development, the expert system could
suggest to adopt Aptana Studio as Integrated Development Environment.

Although the presented approach is mainly focused on the IT domain, it
can be extended to other knowledge domains thus allowing the creation of a
semantic-aware class of expert systems. Imagine the domain of cultural her-
itage in a touristic application where the system suggests new sites, museums,
attractions which are similar to the ones already visited by the user. Although
it is very general, adapting the whole framework to a new domain may present
some limitation due to some factors. First of all, the selection of seed nodes
may not be as straight as for the IT domain. In this paper we exploit the in-
formation available in ITJobsWatch and map them to DBpedia. This process
presents two main critical points: (i) the mapping may not be a simple and
direct process. Automatic entity linking (Gangemi, 2013; Shen et al., 2015)
may introduce some noise in the data as it may not be correct for all the items;
(ii) the selection of seed nodes cannot be done automatically but left to one or
more domain experts. This is the case for domains where we do not have an in-
formation source analogous to ITJobsWatch. Another factor that might hinder
the application of our approach to other knowledge domains is the low quality
of the selected RDF data. The accuracy and richness of the relatedness graph
reflects that of the original RDF data. In case we have a poorly connected RDF

graph it may result difficult to discover relatedness connections among entities.
Actually, this is not the case of the dataset as a whole but also of RDF sub-
graphs in DBpedia representing the domain of interest. As DBpedia reflects the
structure of Wikipedia pages, we may find knowledge domains which are very
well described and connected while other ones which contains a few elements
and associated information. Finally, if the textual description coming with RDF

resources does not contain relevant information, the text-based feature we adopt
in our approach may not contribute very well to the final aggregate relatedness
score.

For a better understanding on how to overcome the above limitations as
future work we are interested in testing our relatedness measure on different
domains in order to evaluate how well the approach can be generalized and
exploiting the knowledge encoded in further LOD datasets in addition DBpedia.
This paves the way to a new research challenge which has been only partially
investigated by the scientific community: how to estimate the quality of LOD
datasets. In fact, while a lot of literature can be found describing metrics
to evaluate data quality applied to the relational model (Kritikos et al., 2013),
almost nothing is available when the problem refers to RDF data. We believe that
metrics for this latter kind of data need to be investigated also in an application-
oriented perspective. Depending on the application built on top of RDF datasets,
we need to investigate different metrics such as knowledge coverage, connection
of the underlying graph and ontological structure of the data.

Among future research directions exploiting the results presented here, we
also see the design of user interfaces able to exploit the relatedness graph to-

26

gether with the semantics associated to nodes. Indeed, if the user is interested
in the configuration of a complex system, the intelligent application must be
able to guide the user by navigating through related resources and, at the same
time, show nodes belonging to specific classes or categories that could be of
interest for the user.

As stated in Section 1 the notion of relatedness does not refer to a single
class of objects but to multiple classes. For this reason the application of our
relatedness graph could feed the recent research on cross-domain recommender
systems (RS) (Cantador and Cremonesi, 2014). While historically recommenda-
tion engines were designed to work in a specific domain (movies, books, music),
recently there has been a growing interest in expert systems able to recommend
items belonging to domains different from the one where the user profile belongs
to. For example, we recommend books to users given their profile in the movie
domain.

Another future research direction for the results we present here is how to in-
tegrate social information for community discovery applications. As an example
we may consider the academic scenario where, given a set of authors, we have
not only information on their papers, their topics and the conference/journals
they have been published in but also social information about co-authorships,
authors who published in the same conferences and journal and so on. All this
information can be combined to allow an intelligent system to identify commu-
nities/clusterings of people working on related topics but above all in related
disciplines.

Acknowledgments. The authors acknowledge partial support of HP IRP 2012 -
Grant CW267313 and PON02 00563 3470993 VINCENTE.

References

H. Abdi. Bonferroni and Sidak corrections for multiple comparisons. Sage,
Thousand Oaks, CA, 2007.

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so
far. International Journal on Semantic Web and Information Systems, 5(3):
1–22, 2009a.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. Dbpedia - A crystal-
lization point for the web of data. Journal of Web Semantics, 7(3):154–165,
2009b.

Danushka Bollegala and Mitsuru Matsuo, Yutaka. Measuring semantic simi-
larity between words using web search engines. In Proceedings of the 16th
international conference on World Wide Web, WWW ’07, pages 757–766,
New York, NY, USA, 2007. ACM. ISBN 978-1-59593-654-7.

27

Iván Cantador and Paolo Cremonesi. Tutorial on cross-domain recommender
systems. In Proceedings of the 8th ACM Conference on Recommender Sys-
tems, RecSys ’14, pages 401–402, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2668-1.

Hsin-Hsi Chen, Ming-Shun Lin, and Yu-Chuan Wei. Novel association measures
using web search with double checking. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics, ACL-44, pages 1009–1016,
Stroudsburg, PA, USA, 2006. Association for Computational Linguistics.

F. Crestani. Application of spreading activation techniques in information re-
trieval. Artificial Intelligence Review, 11:453–482, 1997.

Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer,
and Richard Harshman. Indexing by latent semantic analysis. Journal of the
American Society for Information Science, 41(6):391–407, 1990.

Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation
methods for the web. In Proceedings of the 10th international conference on
World Wide Web, WWW ’01, pages 613–622, New York, NY, USA, 2001.
ACM. ISBN 1-58113-348-0.

Frank Manola, Eric Miller. RDF Primer. http://www.w3.org/TR/rdf-primer,
2004.

Norbert Fuhr. Optimum polynomial retrieval functions based on the probability
ranking principle. ACM Trans. Inf. Syst., 7(3):183–204, July 1989. ISSN
1046-8188.

Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness
using wikipedia-based explicit semantic analysis. In Proceedings of the 20th
international joint conference on Artifical intelligence, IJCAI’07, pages 1606–
1611, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

Aldo Gangemi. A comparison of knowledge extraction tools for the semantic
web. In Philipp Cimiano, Oscar Corcho, Valentina Presutti, Laura Hollink,
and Sebastian Rudolph, editors, The Semantic Web: Semantics and Big Data,
volume 7882 of Lecture Notes in Computer Science, pages 351–366. Springer
Berlin Heidelberg, 2013. ISBN 978-3-642-38287-1.

Jorge Gracia and Eduardo Mena. Web-based measure of semantic relatedness.
In In Proc. of 9th International Conference on Web Information Systems
Engineering (WISE 2008), Auckland (New Zealand, pages 136–150. Springer,
2008.

G. Hirst and D. St Onge. Lexical Chains as representation of context for the
detection and correction malapropisms. The MIT Press, May 1998.

28

http://www.w3.org/TR/rdf-primer

Glen Jeh and Jennifer Widom. Simrank: A measure of structural-context simi-
larity. In Proceedings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’02, pages 538–543, New
York, NY, USA, 2002. ACM. ISBN 1-58113-567-X.

Thorsten Joachims. Optimizing search engines using clickthrough data. In Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’02, pages 133–142, New York, NY, USA,
2002. ACM. ISBN 1-58113-567-X.

Thorsten Joachims. Training linear svms in linear time. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD ’06, pages 217–226, New York, NY, USA, 2006. ACM.
ISBN 1-59593-339-5.

Maurice G. Kendall. Rank correlation methods. Griffin, London, 1948.

Kyriakos Kritikos, Barbara Pernici, Pierluigi Plebani, Cinzia Cappiello, Marco
Comuzzi, Salima Benbernou, Ivona Brandic, Attila Kertész, Michael Parkin,
and Manuel Carro. A survey on service quality description. ACM Comput.
Surv., 46(1):1, 2013.

Adela S. M. Lau, Eric Tsui, and W. B. Lee. An ontology-based similarity
measurement for problem-based case reasoning. Expert Syst. Appl., 36(3):
6574–6579, 2009.

José Paulo Leal. Using proximity to compute semantic relatedness in RDF
graphs. Comput. Sci. Inf. Syst., 10(4):1727–1746, 2013.

José Paulo Leal and Teresa Costa. Tuning a semantic relatedness algorithm
using a multiscale approach. Comput. Sci. Inf. Syst., 12(2):635–654, 2015.

José Paulo Leal, Vânia Rodrigues, and Ricardo Queirós. Computing semantic
relatedness using dbpedia. In 1st Symposium on Languages, Applications
and Technologies, SLATE 2012, Braga, Portugal, June 21-22, 2012, pages
133–147, 2012.

Tie-Yan Liu. Learning to rank for information retrieval. Found. Trends Inf.
Retr., 3(3):225–331, March 2009. ISSN 1554-0669.

Gary Marchionini. Exploratory search: from finding to understanding. Com-
mun. ACM, 49(4):41–46, 2006. ISSN 0001-0782.

Laurent Mazuel and Nicolas Sabouret. Semantic relatedness measure using
object properties in an ontology. In Proceedings of the 7th International Con-
ference on The Semantic Web, ISWC ’08, pages 681–694, Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 978-3-540-88563-4.

George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38
(11):39–41, November 1995. ISSN 0001-0782.

29

Roberto Mirizzi, Azzurra Ragone, Tommaso Di Noia, and Eugenio Di Scias-
cio. Ranking the linked data: the case of dbpedia. In 10th International
Conference on Web Engineering (ICWE 2010), 2010.

Rabia Nuray and Fazli Can. Automatic ranking of information retrieval systems
using data fusion. Inf. Process. Manage., 42(3):595–614, May 2006. ISSN
0306-4573.

Catherine Olsson, Plamen Petrov, Jeff Sherman, and Andrew Perez-Lopez.
Finding and explaining similarities in linked data. In Proceedings of the Sixth
International Conference on Semantic Technologies for Intelligence, Defense,
and Security, Fairfax, VA, USA, November 16-17, 2011, pages 52–59, 2011.

Alexandre Passant. Measuring semantic distance on linking data and using it for
resources recommendations. In Proceedings of the AAAI Spring Symposium
”Linked Data Meets Artificial Intelligence”, 3 2010.

Giuseppe Pirró and Jérôme Euzenat. A feature and information theoretic frame-
work for semantic similarity and relatedness. In Proceedings of the 9th In-
ternational Semantic Web Conference on The Semantic Web - Volume Part
I, ISWC’10, pages 615–630, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN
3-642-17745-X, 978-3-642-17745-3.

Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query, 2008.

Ross Quillian. Semantic memory. In Semantic Information Processing, pages
216–270. MIT Press, 1968.

Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria Blettner. Development and
application of a metric on semantic nets. IEEE Transactions on Systems,
Man and Cybernetics, 19(1):17–30, 1989.

Philip Resnik. Using information content to evaluate semantic similarity in a
taxonomy. In In Proceedings of the 14th International Joint Conference on
Artificial Intelligence, pages 448–453, 1995.

Philip Resnik. Semantic similarity in a taxonomy: An information-based mea-
sure and its application to problems of ambiguity in natural language. J.
Artif. Intell. Res. (JAIR), 11:95–130, 1999.

S.M. Ross. A first course in probability. Macmillan, 1976. ISBN 9780029796207.

Mehran Sahami and Timothy D. Heilman. A web-based kernel function for
measuring the similarity of short text snippets. In Proceedings of the 15th
international conference on World Wide Web, WWW ’06, pages 377–386,
New York, NY, USA, 2006. ACM. ISBN 1-59593-323-9.

David Sánchez and Montserrat Batet. A semantic similarity method based on
information content exploiting multiple ontologies. Expert Syst. Appl., 40(4):
1393–1399, 2013.

30

http://www.w3.org/TR/rdf-sparql-query

David Sánchez, Montserrat Batet, David Isern, and Aı̈da Valls. Ontology-based
semantic similarity: A new feature-based approach. Expert Syst. Appl., 39
(9):7718–7728, 2012.

J. Schmidhuber. Deep learning in neural networks: An overview. Neural Net-
works, 61:85–117, 2015.

Bernhard Schlkopf, K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio, and
V. Vapnik. Comparing support vector machines with gaussian kernels to
radial basis function classifiers. IEEE Transaction on Signal Processing, 45:
2758–2765, 1997.

Wei Shen, Jianyong Wang, and Jiawei Han. Entity linking with a knowledge
base: Issues, techniques, and solutions. Knowledge and Data Engineering,
IEEE Transactions on, 27(2):443–460, Feb 2015. ISSN 1041-4347.

Barry Smyth. Case-based recommendation. In Peter Brusilovsky, Alfred Kobsa,
and Wolfgang Nejdl, editors, The Adaptive Web, pages 342–376. Springer-
Verlag, Berlin, Heidelberg, 2007. ISBN 978-3-540-72078-2.

Michael Strube and Simone Paolo Ponzetto. Wikirelate! computing semantic
relatedness using wikipedia. In proceedings of the 21st national conference on
Artificial intelligence - Volume 2, AAAI’06, pages 1419–1424. AAAI Press,
2006. ISBN 978-1-57735-281-5.

Mohammed Nazim Uddin, Trong Hai Duong, Ngoc Thanh Nguyen, Xin-Min
Qi, and GeunSik Jo. Semantic similarity measures for enhancing information
retrieval in folksonomies. Expert Syst. Appl., 40(5):1645–1653, 2013.

Laurens De Vocht, Sam Coppens, Ruben Verborgh, Miel Vander Sande, Erik
Mannens, and Rik Van de Walle. Discovering meaningful connections between
resources in the web of data. In Proceedings of the WWW2013 Workshop on
Linked Data on the Web, Rio de Janeiro, Brazil, 14 May, 2013, 2013.

Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khan-
delwal, Brandon Norick, and Jiawei Han. Personalized entity recommenda-
tion: A heterogeneous information network approach. In Proceedings of the
7th ACM International Conference on Web Search and Data Mining, WSDM
’14, pages 283–292, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2351-
2.

Parisa D Hossein Zadeh and Marek Z Reformat. Fuzzy semantic similarity in
linked data using the owa operator. In Fuzzy Information Processing Society
(NAFIPS), 2012 Annual Meeting of the North American, pages 1–6. IEEE,
2012.

31

Appendix A. Background technologies: RDF and SPARQL

In this section we briefly recap the basic notions of two Semantic Web tech-
nologies used in our approach: RDF (Eric Miller, 2004) and SPARQL (Prud’hommeaux
and Seaborne, 2008).

Resource Description Framework - RDF.
The Resource Description Framework (RDF) is a general model for describing
information about resources on the Web. It has been developed by the World
Wide Web Consortium (W3C) in 1998 as the building block for the Semantic
Web. It allows to represent Web entities and their relations as well as to attach
to them a machine understandable and processable meaning (semantics) that
can be further exploited to perform automatic reasoning tasks able to infer
new knowledge from the explicitly stated one. Thanks to RDF, resources are
made available on the Web, enabling applications to exploit them by taking into
account their meaning. Each statement about resources is modeled in the form
of a triple: subject-predicate-object. Subjects and predicates are represented by
URIs, while objects can be identified either by URIs or by literals (data values).
As an example, the two following triples are valid RDF statements about the
object-oriented programming language Java:

<http://dbpedia.org/resource/Java_(programming_language)>

<http://www.w3.org/2000/01/rdf-schema#label>

"Java"@en

<http://dbpedia.org/resource/Java_(programming_language)>

<http://dbpedia.org/ontology/influenced>

<http://dbpedia.org/resource/PHP>

where we state that we may refer to the the Java programming language with
the word “Java” in English and that it influenced the development of PHP. RDF
information representation can be formally modeled through a labeled directed
graph. In fact, if we consider all the RDF statements (triples) as a whole, what
we get is a graph, where nodes are resources connected to other resources or to
literal values through predicates (the edges of the graph).
RDF can be serialized by means of different syntaxes. The most compact is the
so called turtle syntax that allows us to use prefixes to shorten the URIs. The
turtle version of the two triples above is:

@prefix dbpedia: <http://dbpedia.org/resource/>

@prefix dcterms: <http://purl.org/dc/terms/>

@prefix category: <http://dbpedia.org/resource/Category:>

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

dbpedia:Java_(programming_language)

rdfs:label "Java"@en ;

dbpedia-owl:influenced dbpedia:PHP .

32

From an ontological point of view, an interesting built-in RDF predicate is
http://www.w3.org/1999/02/22-rdf-syntax-ns#type. It states that a re-
source is an instance of a class.

@prefix dbpedia: <http://dbpedia.org/resource/>

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix dbpedia-owl: <http://dbpedia.org/ontology/>

dbpedia:Java_(programming_language)

rdf:type dbpedia-owl:ProgrammingLanguage .

The previous triple asserts that Java is an instance of the class Programming
Language.

Simple Protocol and RDF Query Language - SPARQL.
SPARQL is the de facto query language for RDF datasets. The language reflects
the graph-based nature of the underlying data model. Indeed, graph-matching
is its query mechanism. A basic SPARQL query is of the form:

PREFIX dbpedia: <http://dbpedia.org/resource/>

PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?c ?l

WHERE {

<http://dbpedia.org/resource/Java_(programming_language)>

dcterms:subject ?c .

?c rdfs:label ?l.

}

where we ask for all possible values that can be assigned to the variables ?l and
?c in order to match the graph pattern expressed in the WHERE clause.

33

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

	Introduction
	Linked Data as a knowledge source in the IT domain
	Computing a semantic relatedness graph in the IT domain as a ranking problem
	Collecting IT resources via DBpedia exploration
	Ranking features
	 Graph-Based ranking
	Text-based ranking
	Web-based ranking

	Ranking features aggregation
	Ranking SVM algorithm
	Borda count algorithm

	Evaluation
	Related work
	Conclusion and future work
	Background technologies: RDF and SPARQL

