
Exposing Open Street Map in the Linked Data
cloud

Vito Walter Anelli1, Andrea Cal̀ı2, Tommaso Di Noia1, Matteo Palmonari3,
Azzurra Ragone3

1 Polytechnic University of Bari, Via Orabona, 4, 70125 Bari, Italy
v.anelli@studenti.poliba.it, tommaso.dinoia@poliba.it

2 Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
andrea@dcs.bbk.ac.uk

3 University of Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milano, Italy
{firstname.lastname}@unimib.it

Abstract. After the mobile revolution, geographical knowledge has get-
ting more and more importance in many location-aware application sce-
narios. Its popularity influenced also the production and publication of
dedicated datasets in the Linked Data (LD) cloud. In fact, its most recent
representation shows Geonames competing with DBpedia as the largest
and most linked knowledge graph available in the Web. Among the var-
ious projects related to the collection and publication of geographical
information, as of today, Open Street Map (OSM) is for sure one of the
most complete and mature one exposing a huge amount of data which is
continually updated in a crowdsourced fashion. In order to make all this
knowledge available as Linked Data, we developed LOSM: a SPARQL
endpoint able to query the data available in OSM by an on-line transla-
tion form SPARQL syntax to a sequence of calls to the OSM overpass

API. The endpoint makes also possible an on-the-fly integration among
Open Street Map information and the one contained in external knowl-
edge graphs such as DBpedia, Freebase or Wikidata.

1 Introduction

In the last years we are witnessing the spread of knowledge intensive applications
that relies on the flourishing of the datasets available in the Linked Data (LD)
Cloud 4. The richness of semantic data they expose paves the way to a new
generation of services and tools exploiting the ontological knowledge they encode
as well as the possibility to easily mash up data coming from different sources.
Among them, geographical datasets are becoming more and more important to
deliver location-aware services.

The availability of a common query interface i.e., SPARQL, and the crowd-
driven standardization of ontological vocabularies allows an intelligent applica-
tion to grab data from diverse datasets and join them. We may imagine different

4 http://lod-cloud.net



scenarios where such a feature can be an important asset to provide a high qual-
ity service such as context-aware recommendation systems [15], on-line shopping,
etc. or public services needed in situations of disaster management where the
quality and timeliness of the data is of crucial importance.

In many application scenarios, geographical information is a key factor to
enhance system answers to user request, e.g.,in a movie recommendation scenario
in order to suggests not only a movie according to user preferences, but also with
reference to the closeness of the cinema.

Geographical knowledge bases and geo-spatial reasoning may play a key role
also in emergency response or transportation planning[16, 3, 5] where it results
useful to combine knowledge from different types of datasets in order to get
knowledgeable information from the system. As a way of example, while orga-
nizing a trip, the user could combine information about the cultural heritage sites
and means of transport with hotel accommodations, taking into account their
proximity. Analogously, in emergency response situations, data can be combined
to obtain a helpful and timely response. In an emergency scenario, e.g.,an earth-
quake, the user should be able to query a knowledge base to look for collection
camps, hospitals, rescue places, areas for helicopter landing as well as informal
camps where the homeless have set up tent camps.

In this paper we present LOSM (Linked Open Street Map), a service that
acts as a SPARQL endpoint on top of OSM. LOSM allows one to query Open
Street Map data via a SPARQL query as it takes care to translate the query
into a set of calls to OSM APIs. This results in exposing all the information
contained in the Open Street Map geographical database as Linked Data thus
making OSM a first class citizen in the Linked Data Cloud.

While LOSM supports an on-the-fly integration of OSM data with data com-
ing from other sources, differently from similar projects (see LinkedGeoData5 [2]
for example) LOSM does not rely on a periodical dump of the data, but it always
exposes fresh and up-to-date data.

Another strength of our tool is the possibility to merge different datasets of
the Linked Data cloud, linking geo-spatial knowledge with the one coming from
various knowledge bases, as we show in Section 3.1.

The remainder of this paper proceeds as follows. In Section 2 we start by
briefly describing Open Street Map and the reason why we chose it as a provider
of linked geo-spatial data, then we describe the system architecture and the
query language implemented in LOSM. Then, in Section 3 we describe two use
cases through some sample queries highlighting the capabilities of LOSM, with
a particular reference to an emergency management scenario. Finally, in Section
4 we review related works relying on the use of geo-spatial data. Conclusion and
future work close the paper.

5 http://linkedgeodata.org/



2 LOSM: Linked Open Street Map

In the ”geo-data” arena, the crowd sourced project Open Street Map [10] is
currently playing a primary role due to its openness, easy of use and of integration
in third party applications.

OSM is a geographical database maintained by Web users containing a huge
amount of data that can also be displayed on a map. Its database is updated
every 15 minutes and as of today it contains 5,027,330,590 GPS points and
2,445,598 users who contribute to the project.

All this data is either available via weekly dumps or it is queryable through
a public API. In particular, overpass6 is a read-only API which allows the user
to query Open Street Map by means of at least two different languages: XML or
Overpass QL. By means of an overpass query, the API is able to retrieve nodes
within an area, recognize streets or relations.

The query language is very expressive and makes possible to perform spatial
reasoning by imposing constraints within the query. For instance, the user may
impose relationships among nodes through filters such as around, bounding box

and the poly function. It is easy to see that having such data available in the
Linked Open Data cloud would surely enrich the amount and quality of the
information available within the so called Web of Data.

This is the rationale behind the LinkedGeoData project [2]. It aims at tripli-
fying Open Street Map dumps every six months by mapping OSM tags and
sourceKey properties with reference to a publicly available ontology. This is a
very useful resource because it makes available classes that map keys and tags
used in Open Street Map nodes.

Although the big effort and work in developing and maintaining the datasets
behind the project, LinkedGeoData suffers from the misalignment between the
data available via the SPARQL endpoint (based on a dump) and the one avail-
able in Open Street Map. Indeed, the updates made by the users are available as
RDF triples only when the dump is processed and loaded in the LinkedGeoData

triple-store.

Despite the considerable effort, LinkedGeoData approach cannot be used
for all those scenarios where timeliness and freshness of information is a must
have. A flagship example is that of disaster recovery where information about
collection camps, rescue places, temporary hospitals, passable roads, etc. needs
to be available as soon as possible.

Starting from this observation we developed LOSM, a SPARQL endpoint
that acts as a translator from a SPARQL query to a set of overpass API calls.
In such a way we are sure that the data we retrieve is always fresh and up-to-date
as they come directly from the OSM database, which is constantly updated by
a crowd of volunteer all around the world.

The scheme in Figure 1 shows an overview of the service architecture. In a
few words, the systems is able to translate a SPARQL query to a sequence of

6 http://wiki.openstreetmap.org/wiki/Overpass_API



Fig. 1. Overall representation of the system architecture

(iterative) overpass API calls, collect the data, join and return it to the client.
We currently support SPARQL queries via HTTP GET.

The Parser uses a scanner for the recognition of lexemes in a SPARQL
query and creates the data-structures needed by the Query Manager. This
module is in charge of breaking the query into sub-queries according to the
remote functions available in the overpass API.

The Result Manager handles the sub-queries and the results they generate
to create the final Result map. The Result Manager breaks the graph pattern
described in the SPARQL query into a set of connected sub-graphs by identifying
their mutual relations. Each sub-query goes through the Translator which is in
charge of creating the overpass calls.

The system also exposes a Web page with a query editor with autocomplete
facilities with respect to the LinkedGeoData ontology classes.

LOSM is available at http://sisinflab.poliba.it/semanticweb/lod/losm/.

2.1 The SPARQL sublanguage implemented in LOSM.

In its current version, LOSM implements a subset of the full specification of
SPARQL 1.0 plus some non-standard features7 that results very useful when
querying geographical data. We currently support only the SELECT query form
and the Jena Spatial8 extension also available in GeoSPARQL [3]. We support
simple graph patterns that we anyway consider representative of a large number

7 Details on the implemented subset is available at http://sisinflab.poliba.it/

semanticweb/lod/losm/losm_grammar.html
8 https://jena.apache.org/documentation/query/spatial-query.html



of queries over geographical data. As for the implemented spatial functions, we
may list:

– spatial:nearby (latitude longitude radius [units])9 returns URIs
nodes (Open Street Map URIs) within the radius distance of the location of
the specified latitude and longitude.

– spatial:withinCircle (latitude longitude radius [units]) computes
a circle centered in specified latitude and longitude and given radius and re-
turns the OSM nodes within the circle.

– spatial:withinBox (latitude min longitude min latitude max longitude max)

calculates a rectangle by specifying the list of coordinates for the edges that
has to follow the order provided in the function.

– spatial:within("POLYGON((Point1 lat Point1 lon,...,PointN lat PointN lon))")

calculates the polygon area expressed by Well Known Text (WKT) literals
and returns OSM nodes available within it.

Regarding the URIs of classes and properties used in the graph pattern for
SPARQL queries, LOSM may refer to the LinkedGeoData Ontology controlled
vocabulary as well as to an ontological one which is a one-to-one mapping with
OSM system of tags10. The rationale behind the introduction of this new vo-
cabulary is driven by the main goal we had in mind while developing LOSM: to
have a SPARQL endpoint able to timely expose all the changes that continually
happen in Open Street Map even at the semantic level (represented by the tags).

Although very useful and structured, a static ontology as the one modelled
within the LinkedGeoData project, cannot follow continuous data variations
due to users’ freedom in inserting new tags and values. In each community a
lot of linguistic phenomenons happen in time that change the frequency of a
term occurrence and then its importance and adoption by the community itself.
To address this problem we introduced a LOSM prefix <http://sisinflab.

poliba.it/semanticweb/lod/losm/ontology/> (shortened in losm) based on
the same crowdsourcing concept. The Parser recognizes the use of this prefix
and prepares the overpass query in the proper way. This lets the user to use
any term she considers reasonable and the evaluation of the existence of the
term is based only on the real data coming from Open Street Map. As an exam-
ple, if the user wants to retrieve information classified with the key-value pair
key="refugee" value="yes" she will refer to the corresponding property rep-
resented by the URI <http://sisinflab.poliba.it/semanticweb/lod/losm/
ontology/refugee> or equivalently by the CURIE losm:refugee (see the ex-
ample in Section 3.1 ).

Some keys are reserved to provide advanced features in LOSM that makes
easy the integration with other external knowledge graphs exposing a SPARQL
endpoint such as DBpedia11 or Wikidata12. The losm:dbpedia property acts

9 [units] can be meters (’m’ or ’M’), kilometers (’km’ or ’KM’) or miles (’mi’ or ’MI’).
10 http://wiki.openstreetmap.org/wiki/Tags
11 http://dbpedia.org/sparql
12 https://query.wikidata.org



as a converter from the Wikipedia page or Wikipedia id associated to an Open
Street Map node to the corresponding DBpedia resource. Analogously, losm:wikipedia
returns the complete URI of the corresponding Wikipedia page. In both cases,
the output may refer to the main English version of DBpedia/Wikipedia or to
a local version depending on the value of the OSM key wikipedia.

3 Use case

The first use case we present in this section has the only purpose to explain how
LOSM works, showing the steps performed by the Query Manager (see Figure
1).

Suppose the following situation: the day is over in our laboratory and the crew
wants to find restaurants nearby (within 200 meters) together with the cinemas
which are at most one km far from each restaurant. They want to know the names
of restaurants and cinemas together with the URIs of the latter. The above use
case can be modeled by the SPARQL query:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX lgdo: <http://linkedgeodata.org/ontology/>

PREFIX spatial: <http://jena.apache.org/spatial#>

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

SELECT ?cinema ?nameC ?nameR

WHERE {

?link rdfs:label "Sisinf Lab" .

?link geo:lat ?lat .

?link geo:long ?lon.

?object spatial:nearby(?lat ?lon 200 ’m’) .

?object a lgdo:Restaurant .

?object rdfs:label ?nameR .

?object geo:lat ?lat2 .

?object geo:long ?lon2.

?cinema spatial:nearby(?lat2 ?lon2 1000 ’m’) .

?cinema a lgdo:Cinema .

?cinema rdfs:label ?nameC .

}

The query is processed based on a priority system relying on a weighted depen-
dency graph. The triples composing the graph pattern are analysed and grouped
into the corresponding sub-graphs by looking at their subject. The system at-
taches to each triple a value depending on the degree of connection with other
groups measured by taking into account shared variables and predicates. Then
each group is labeled with a weight proportional to its triples values. The group
with the lowest value is the first sent to the Translator component. The Trans-
lator converts the set of sub-queries to its overpass equivalent starting with the
triple with the lowest value. Once the results from overpass API are returned,
they are used to update the initial query so new weights are computed. The
process iterates on triples groups until the last sub-query has been translated.



?link [?link rdfs:label "Sisinf Lab" , ?link geo:lat ?lat , ?link geo:long

?lon ]

?object [?object spatial:nearby ?lat ?lon 200 ’m’ , ?object a lgdo:Restaurant

, ?object rdfs:label ?nameR , ?object geo:lat ?lat2 , ?object geo:long

?lon2 ]

?cinema [?cinema spatial:nearby ?lat2 ?lon2 1000 ’m’ , ?cinema a lgdo:Cinema

, ?cinema rdfs:label ?nameC ]

Based on the above grouping, the Query Manager selects first the ?link group
and generates the Overpass QL expression representing the first query to the
overpass API:

node["name"="Sisinf Lab"];

out body;

Then the system executes the overpass query related to the ?object group
which is composed by taking into account the results of the previous one.

node(around:200,41.1095222,16.8778234)

["amenity"="restaurant"]

["name"];

out body;

The final sub-graph is converted into a set of overpass API calls; one for each
node returned by the previous query. As an example we have:

node (around: 1000,41.1085645,16.8768552)

["amenity" = "cinema"]

["name"];

out body;

3.1 Emergency management scenario

We now present a use case in emergency management where the usefulness of
LOSM is twofold. On the one hand, we may have access to always fresh and
timely information in the context of an unpredictable disaster. On the other
hand, we can exploit a third party endpoint supporting SPARQL 1.1 to perform
a federated query among LOSM, DBpedia and Wikidata thus mashing up the
knowledge coming from the three sources. Indeed, in such a context relevant
data rapidly changes over time and the system capability of linking information
from different knowledge bases is crucial.

An Italian manager is doing a business trip in the Miyagi Prefecture when an
earthquake happens. The damages all around are severe and catastrophic. It is
possible that aftershocks will follow and he has to find a way to rescue himself in
a foreign country, plus he does not speak Japanese. In the mean time news about
the event are reaching any corner of the world and mechanisms of international
assistance are already on the move. Volunteers are populating Open Street Map



with fresh data about collection camps, rescue places and temporary hospitals 13.
The manager has two primary needs: reaching a near refugee camp and, then,
look for an airport to go back to Italy. He has a mobile phone with Gps and
Internet connectivity so he tries to look for refugee camps, mapped on Open
Street Map, which are located near by.

This request can be translated in the following SPARQL query 14:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX lgdo: <http://linkedgeodata.org/ontology/>

PREFIX spatial: <http://jena.apache.org/spatial#>

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

SELECT ?object ?name ?lat ?long

WHERE {

?object spatial:nearby(38.2943 140.65000 5000 ’m’) .

?object losm:refugee "yes".

?object rdfs:label ?name .

?object geo:lat ?lat.

?object geo:long ?long.

}

This query allows the user to retrieve any item containing the tag refugee

within a circle with radius of 5000m and returns the Open Street Map node, the
name, and the GPS coordinates (lat, long). Obviously, the user does not have
to write the SPARQL query himself, but he should rely on an end-user interface
that allows him to build a SPARQL query without knowing the SPARQL language
(see as a way of example the tools presented in [7, 8]).

In order to show the capability of the system to link information coming from
different knowledge bases, we give an example of a more complex and exhaustive
queries that can be posed to the Linked Data Cloud thanks to the use of LOSM.

From the previous query, the manager has found a refugee camp whose name
he cannot understand as it is returned in Japanese. Anyway, based on the re-
sult of the previous query he wants to retrieve information about the nearest
cities (within 10km) and airports to go back to Italy. He wants to retrieve info
about the nearest cities in Italian and the name of the airports (together with its
coordinates) in English in order to pronounce it in an understandable way.

PREFIX dbpedia: <http://dbpedia.org/ontology/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

13 The reader can find a real example of such scenario in [17] where it is described the
Haiti-post-earthquake work done on Open Street Map: volunteers rapidly mapped
the affected areas so helping the aid effort. They show the impact of a crowdsourced
mapping in such emergency situation. Moreover, Open Street Map has an human-
itarian team to deal with emergency situations. They keep updated a page with
current and past remote mapping actions (see http://wiki.openstreetmap.org/

wiki/Humanitarian_OSM_Team)
14 It is noteworthy the use of the spatial function spatial:nearby, the LOSM predicate

losm:refugee and the geo functions geo:lat and geo:long.



PREFIX lgdo: <http://linkedgeodata.org/ontology/>

PREFIX spatial: <http://jena.apache.org/spatial#>

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX losm: <http://sisinflab.poliba.it/semanticweb/lod/losm/ontology/>

PREFIX schema: <http://schema.org/>

PREFIX wdt: <http://www.wikidata.org/prop/direct/>

PREFIX wd: <http://www.wikidata.org/entity/>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?uriRefer ?dburi ?text ?airportname ?airportLat ?airportLong ?wdURI ?freebaseID ?geonames

WHERE {

SERVICE <http://sisinflab.poliba.it/semanticweb/lod/losm/sparql> {

?link losm:name " 仙台市立広陵中学校".

?link geo:lat ?lat .

?link geo:long ?lon.

?uriRefer spatial:nearby(?lat ?lon 10 ’km’) .

?uriRefer a lgdo:City .

?uriRefer losm:dbpedia ?dburi .

?uriRefer losm:wikidata ?wdID .

}

SERVICE <http://dbpedia.org/sparql> {

?dburi dbpedia:abstract ?text .

?dburi foaf:isPrimaryTopicOf ?wikiuri .

FILTER langMatches(lang(?text),’it’).

?airport dbo:location ?dburi.

?airport rdf:type dbo:Airport.

?airport rdfs:label ?airportname .

?airport geo:lat ?airportLat .

?airport geo:long ?airportLong .

filter(lang(?airportname) = ’en’)

}

BIND(IRI(CONCAT("http://www.wikidata.org/entity/" ,str(?wdID) )) AS ?wdURI).

SERVICE <http://query.wikidata.org/sparql> {

SELECt ?wdURI ?freebaseID ?geonames {

?wdURI wdt:P646 ?freebaseID.

?wdURI wdt:P1566 ?geonames.

}

}

}

The previous query, by exploiting the SERVICE keyword from SPARQL 1.1,
is able to combine information from different knowledge graphs with the one
coming from LOSM. The first service invoked is the LOSM endpoint, the query
returns cities within a radius of 10 km from the refugee camp found in the
previous query 15. Additionally, the DBpedia resource URI and the Wikidata

15 Note that the returned name is a Japanese name.



ID are returned. The second invoked service is the DBpedia endpoint. Here
the query returns the Wikipedia URI, the Italian description of the city, the
English name and the latitude and longitude of the airport. The last service is
the Wikidata endpoint, form which we get the identifiers of the same city in
Freebase and Geonames knowledge bases.

Summing up, the previous example shows how it is possible to get data re-
ferring to six different data sources (Open Street Map, Wikipedia, DBpedia,
Wikidata, Freebase and Geonames) having only the two values of latitude and
longitude available. It is worth to note that most of the data sources have a
crowdsourcing nature, which usually weakens the integration between datasets
because of the heterogeneity of the contributions. The problem is highly miti-
gated in this scenario thanks to spatial queries that can retrieve the outgoing
references from points near to the starting one.

4 Related Work

In this section we first briefly describe various approaches and systems that deal
with and expose geo-spatial data in a static way in the Web of Data. Then,
we review some approaches that deal with and expose dynamic data sources as
Linked Data.

In recent years several ontologies and languages have been proposed to model
and query dataset related to geo-spatial knowledge and to extract information
from these knowledge bases. The first attempts refer to Basic Geo Vocabulary
and GeoOWL ontology. Basic Geo Vocabulary [9] is a simple RDF Schema vo-
cabulary able to represent latitude, longitude and altitude information in the
WGS84 reference system. The Basic Geo Vocabulary has then been extended
with GeoRSS to include various geometric objects as points, lines, polygons and
their associated feature descriptions [6]. A more structured and ontological rep-
resentation of the GeoRSS vocabulary is available in the GeoOWL ontology 16.
Although these two projects were developed by W3C groups they never have
become W3C recommendations (and they are not very used by the community).

GeoSPARQL [3] from the Open Geospatial Consortium (OGC) is a standard
that has the aim to provide a way to represent and query geospatial data in the
Semantic Web. GeoSPARQL addresses this task providing a small ontology to
represent features and geometries and a number of SPARQL query predicates
and functions. The ontology can be combined to other ontologies representing
other domains, so enhancing the latter with spatial information. GeoSPARQL
allows systems to infer topological information through a qualitative spatial rea-
soning, e.g.,if a monument is inside a park, and the park is in a city, then the
monument is in that city [3], as well as quantitative spatial reasoning (e.g.,
measuring distances). A plus of GeoSPARQL is the possibility to infer quali-
tative knowledge starting from quantitative ones using a single languages for

16 http://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/W3C_XGR_Geo_

files/geo_2007.owl



both types of reasoning. GeoSPARQL standards are supported by the triple-
store Parliament [4] to query spatial data via RDF properties, which is able to
answer queries like ”find all items located with a region X ”. Parliament does not
support Basic Geo Vocabulary, differently from OWLIM-SE (now GraphDB)
triple store [1] which however supports only points for storage, thus allowing
queries to find points within ad-hoc polygons and circles and to compute dis-
tances between points. GraphDB data types and queries are not compliant with
GeoSPARQL[16].

Strabon[12] is a semantic spatiotemporal RDF store, that can be used to store
linked geospatial data and to query them using an extension of SPARQL named
stSPARQL. stSPARQL can be used to query data represented in an extension of
RDF called stRDF that model geospatial data that changes over time (e.g., the
growth of a city over the years). Strabon supports spatial datatypes enabling the
serialization of geometric objects in OGC standards WKT and GML, as well as
a subset of GeoSPARQL.

USeekM17 is an extension library for semantic databases that adds effi-
cient geospatial support. The module supports OpenGIS geometry types (such
as Point, Line, Polygon) and functions (such as Within, Intersects, Overlaps,
Crosses) as standardized in the OGC GeoSPARQL standard.

Among database engines, Virtuoso Universal Server [18] can handle 2-dimensional
points expressed with WGS84 coordinates, as well as storage of geometric shapes
(lines, polygons, etc.). In order to check if two geometries are related, Virtuoso
uses some built-in predicates (e.g.,ST contains, ST within, ST intersect) and
supports some geometric functions (e.g., ST distance, ST x, ST y, ST z). At the
moment Virtuoso is not fully compliant with GeoSPARQL.

Oracle Spatial and Graph[14] supports, among others, RDF Semantic Graph
data management and analysis, its applications ranging from semantic data inte-
gration to linked open data and network graphs used in transportation, utilities,
energy and telcos. Oracle Spatial and Graph uses GeoSPARQL for representing
and querying spatial data, even if it is not fully compliant with it.

A native RDF triple store implementation with spatial query functionality
is described by Brodt et al. [5]. They model spatial features in RDF as typed
complex literals and define spatial predicates as filter functions in SPARQL.
However, their approach is optimized for storing and querying static RDF data
with rare updates, as changes and updates in the location data can have an
impact on their indexing and data processing.

Then, there are works that show how to expose dynamic data sources as
Linked Data. Harth et al. [11] present an approach to expose data coming from
information services as Linked Data to support their integration. Mapping is
performed by using a tool to map RESTfull services to a reference ontology[20].
Although OSM is considered as one source, only queries based on bounding box
have been supported. Thus this work does not proposes a general approach to
expose OSM data as Linked Data.

17 https://dev.opensahara.com/projects/useekm



Speiser et al.[19] and Norton et al.[13] present in their papers general ap-
proaches to expose data provided by services as Linked Data when invoked with
a proper input, with [19] providing a more complete approach compared to [13].
Examples provided in the papers consider geospatial services like GeoNames [19]
or OSM [13]. These general approaches are interesting but can hardly support
the large variety of spatial queries over OSM that are supported by LOSM. In
addition, vocabulary of the service is not mapped to widely adopted vocabularies
as we did in LOSM.

5 Conclusion and Future Work

We presented LOSM, a service that acts as a SPARQL endpoint on top of Open
Street Map data. Differently from LinkedGeoData, it does not work by using
dumps of the OSM datasets but it queries directly the OSM database by means
of a translation from SPARQL to overpass API calls. The implementation cur-
rently works on a subset of the SPARQL language plus the geographical query
constructs from the Jena Spatial extension. We show how fresh and timely geo-
graphical data exposed via a SPARQL endpoint in combination with information
coming from multilingual knowledge graphs can affect the search for informa-
tion in a disaster recovery scenario. We are currently working to extend the
expressiveness of the SPARQL sub-language supported by LOSM.

References

1. Ontotext AD. Graphdb (formerly owlim) triple store, 2015. http://ontotext.

com/products/graphdb/.
2. Sören Auer, Jens Lehmann, and Sebastian Hellmann. Linkedgeodata: Adding a

spatial dimension to the web of data. In Proceedings of the 8th International
Semantic Web Conference, ISWC ’09, pages 731–746, 2009.

3. Robert Battle and Dave Kolas. Geosparql: enabling a geospatial semantic web.
Semantic Web Journal, 3(4):355–370, 2011.

4. Robert Battle and Dave Kolas. Enabling the geospatial semantic web with parlia-
ment and geosparql. Semantic Web, 3(4):355–370, 2012.

5. Andreas Brodt, Daniela Nicklas, and Bernhard Mitschang. Deep integration of
spatial query processing into native rdf triple stores. In Proceedings of the 18th
SIGSPATIAL International Conference on Advances in Geographic Information
Systems, pages 33–42. ACM, 2010.

6. Open Geospatial Consortium. An introduction to georss: A standards based ap-
proach for geo-enabling rss feeds. white paper, 2006. http://www.opengeospatial.
org/pressroom/pressreleases/580.

7. R. Carrascosa L. Alonso i Alemany H. Durán E. Andrawos, G. Garćıa Berro-
tarán. Quepy - transform natural language to database queries. http://quepy.

machinalis.com/.
8. Sébastien Ferré. Sparklis: a sparql endpoint explorer for expressive question an-

swering. In ISWC Posters & Demonstrations Track, pages 45–48. CEUR, 2014.
9. W3C Semantic Web Interest Group. Basic geo (wgs84 lat/long) vocabulary, 2006.

http://www.w3.org/2003/01/geo/.



10. Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street
maps. Pervasive Computing, IEEE, 7(4):12–18, 2008.

11. Andreas Harth, Craig A Knoblock, Steffen Stadtmüller, Rudi Studer, and Pedro
Szekely. On-the-fly integration of static and dynamic linked data. In Proceedings
of the Fourth International Workshop on Consuming Linked Data co-located with
the 12th International Semantic Web Conference, pages 1613–0073.

12. Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. Strabon: a
semantic geospatial dbms. In The Semantic Web–ISWC 2012, pages 295–311.
Springer, 2012.

13. Barry Norton, Reto Krummenacher, Adrian Marte, and Dieter Fensel. Dynamic
linked data via linked open services. In Workshop on Linked Data in the Future
Internet at the Future Internet Assembly, pages 1–10, 2010.

14. Oracle. Oracle spatial and graph. http://bit.ly/1lvCtWi.
15. Vito Claudio Ostuni, Giosia Gentile, Tommaso Di Noia, Roberto Mirizzi, Davide

Romito, and Eugenio Di Sciascio. Mobile movie recommendations with linked
data. In Availability, Reliability, and Security in Information Systems and HCI
- IFIP WG 8.4, 8.9, TC 5 International Cross-Domain Conference, CD-ARES,
pages 400–415, 2013.

16. Kostas Patroumpas, Giorgos Giannopoulos, and Spiros Athanasiou. Towards
geospatial semantic data management: strengths, weaknesses, and challenges
ahead. In Proceedings of the 22nd ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pages 301–310. ACM, 2014.

17. Robert Soden and Leysia Palen. From crowdsourced mapping to community
mapping: The post-earthquake work of openstreetmap haiti. In COOP 2014-
Proceedings of the 11th International Conference on the Design of Cooperative
Systems, pages 311–326. Springer, 2014.

18. OpenLink Software. Virtuoso universal server. http://ontotext.com/products/

graphdb/.
19. Sebastian Speiser and Andreas Harth. Integrating linked data and services with

linked data services. In The Semantic Web: Research and Applications, pages
170–184. Springer, 2011.

20. Mohsen Taheriyan, Craig A Knoblock, Pedro Szekely, and José Luis Ambite.
Rapidly integrating services into the linked data cloud. In The Semantic Web–
ISWC 2012, pages 559–574. Springer, 2012.


