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A semantic-enabled social network of devices for
building automation
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Abstract—The progress of building automation devices and
networks is curbed by application models with limited device
autonomy, static configuration scenarios and frequent explicit
user interaction. This paper presents a novel approach inspired to
social network interactions for increased object self-configuration
and self-orchestration in home and building automation. Objects
become autonomous social agents, interacting and coordinating
automatically as new information about the environment is
available. The framework is grounded on a service-oriented
architecture for encapsulating, exchanging and composing device
capabilities and on semantic-based service description, discovery
and aggregation exploiting non-standard inference services. The
proposed approach was implemented in two different testbeds
and experimental evaluations of feasibility and performance were
carried out with respect to a home automation case study.

Index Terms—Building Automation, Internet of Things, Se-
mantic Web, Social objects, Service-Oriented Architecture.

I. INTRODUCTION AND MOTIVATION

Building Automation Systems (BAS) are characterized by
increasing levels of integrated computational capabilities, di-
versification of appliances and affordability. Performance of
network infrastructures and protocols, both wired and wire-
less, is also on the rise. This progress allows envisioning
advanced BASs with highly intelligent devices and subsys-
tems, interacting autonomously with minimal or no user effort
in order to control the building environment for maximum
comfort, safety, security and energy efficiency. A key aspect
of intelligence in building automation contexts lies in this
self-configuration capability of devices to reach high-level
goals rather than to accomplish low-level user commands.
In a smart building, devices and subsystems should be able
to determine their own status and discover other devices for
data and command exchange through flexible service-oriented
paradigms.

Current application-level protocols for BAS are still far
from realizing that vision, relying on the setup of a limited
and static set of configurations at system deployment time
by trained practitioners. Conventional solutions for Home
and Building Automation (HBA) offer very limited adaptiv-
ity, automation and self-configuration, betraying their roots
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from a time when device controllers had severely constrained
computing capabilities and communication protocols offered
very limited bandwidth. In latest years, the consumer market
saw the proliferation of “smart home” devices and platforms
by many Information and Communication Technology (ICT)
product manufacturers, according to the Internet of Things
(IoT) vision. Such solutions, however, are generally affected
by two basic issues. Due to the fragmentation of technological
standards, interoperation is restrained within small sets of
device types and models, supporting one of the vendor-
specified platforms. The second core problem lies in the
adopted application-oriented model, leveraging the familiarity
of smartphone and tablet user interfaces. Although today
mobile devices have much greater usability than conventional
building automation control panels, users are still required to
take the whole burden of control: granted levels of automation
are minimal, rarely surpassing the activation/deactivation of
individual appliances or pre-configured groups of device set
points. Nowadays better approaches are not only possible –
through the use of artificial intelligence techniques and agent-
oriented design– but needed to help HBA expand in new
market segments and solve the tough challenges stemming
from the increased population density of metropolitan areas
and from the higher urgency of environmental protection.

This paper introduces a novel BAS paradigm, based on
social objects and semantic resource/service description and
discovery boosting autonomiciy, self-configuration capabilities
and goal-oriented interaction in traditionally static scenar-
ios. In the proposed framework, devices act as intelligent
agents, capable of configuration, coordination and orchestra-
tion. Interaction patterns inspired to social networks enable
objects to establish cooperation relationships, share informa-
tion, issue requests and update their status and settings, in
a fully dynamic and decentralized fashion. Objects and ap-
pliances exploit Knowledge Representation (KR) technologies
borrowed from the Semantic Web to express and exchange
knowledge about themselves, the context and environment.
Each device becomes a provider and consumer of services,
described with rich and unambiguous semantics with respect to
conceptualizations formalized in ontologies. Semantic-based
matchmaking implemented in a resource-efficient engine [1]
enables dynamic service discovery and composition in a mod-
erately expressive fragment of the Web Ontology Language
(OWL 2)1, with support for approximated matches, service
aggregation and ranking, as well as logic-based explanation

1OWL 2 Web Ontology Language Primer (Second Edition), W3C Recom-
mendation 11 December 2012, https://www.w3.org/TR/owl2-primer/
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of outcomes [2]. With respect to common BAS solutions,
an important improvement is that, as devices and subsystems
acquire new knowledge about their context and environment,
both their configurations and active services evolve: the BAS
becomes a social network of objects, capable of pursuing
overall high-level goals as an emergent behavior out of the
individual device interactions, without requiring explicit user
actions.

The proposed framework was implemented in two testbeds:
the first one was based on Arduino boards and the other one
on more resourceful Intel Edison and Zolertia single-board
computers. This allowed performance comparison experiments
in order to assess the minimum computational resource re-
quirements of the proposal in a home automation case study.
Results showed even the more limited hardware setup was
able to support the reference architecture, with proper software
implementation strategies and the assistance of a slightly more
powerful node acting as semantic matchmaking facilitator.

The remainder of the paper is organized as follows: Section
II discusses related work, while the proposed approach is
explained in Section III. Section IV describes the case study
to further clarify the proposal, followed by experiments in
Section V. Conclusion in Section VI closes the paper.

II. STATE OF THE ART

KR enables domain modeling with machine-understandable
formal syntax and semantics. Most works currently adopt
Semantic Web languages and technologies, grounded on De-
scription Logics (DLs). Basic syntax elements of the DL
family of logic formalisms are: concepts (a.k.a. classes), repre-
senting sets of objects, e.g., WashingMachine, ElectricPower;
roles (a.k.a. properties) linking pairs of concepts, e.g., max-
imumPowerConsumption; individuals (a.k.a. instances), spe-
cific named objects belonging to concepts. These elements can
be combined through constructors to obtain concept and role
expressions. Each DL has a different set of constructors. Every
DL uses the conjunction u constructor; some DLs include also
disjunction t and complement :. Roles can be combined with
concepts using existential role quantification 9, universal role
quantification 8, number restrictions and others. The meaning
of DL expressions and inference tasks to reason upon them
are based on a set-theoretic interpretation function. As more
constructors are allowed, the DL expressiveness rises, but
also the computational complexity of inferences grows [3],
so requiring a trade-off. Concept expressions can be used in
inclusion and definition axioms, which restrict the possible
interpretations according to the knowledge about a given
domain. Sets of such axioms are called TBox (Terminological
Box, a.k.a. ontology). A set of asserted facts about individuals
is an ABox (Assertion Box). A TBox and an ABox referencing
it constitute a DL Knowledge Base.

Semantic-based approaches were proven effective for infor-
mation integration and device/service discovery in pervasive
Multi-Agent Systems (MASs), and particularly smart build-
ing automation [4], [5]. Building automation ontologies are
used for system design and commissioning, device descrip-
tion, data modeling and access, and ambient control [6],

[7]. The proposed architecture in [7] included a reasoning
module exploiting rule-based inferences. Unfortunately, the
system state should fully match rule conditions in order to
trigger a rule. Full matches are rare in realistic scenarios,
whose entities are featured by detailed, heterogeneous and
often contradictory information, unless one uses very basic
rules. The ontology-based BAS in [8] provided context-aware
customized information delivery to different types of users,
e.g., maintenance and caregivers in a rehabilitation facility.
OWL device and user descriptions were matched through
SPARQL queries and SWRL rules were used to implement
temporal and extra-logical constraints, achieving capabilities
similar to classical Complex Event Processing (CEP) systems.
Nevertheless, system integration appears problematic, since
installing new devices required not only manual configuration,
but also additions or modifications to the ontology.

The approach in [4] adopted the Service-Oriented Archi-
tecture (SOA) paradigm and enabled BAS service discovery
and composition. The framework in [9] combined statistical
models for user activity and preference learning with semantic
models for selecting the most appropriate service for the
current activity. Similarly, in [10] a hybrid model was used
to recognize activities of daily living: core activity models
were created through ontology engineering, then updated in-
crementally through activity learning. The three above works,
however, support full matches only, again limiting manageabil-
ity of articulated semantic-based descriptions. Furthermore,
devices basically take a passive role: they react to stimuli
from users or other system components, but do not exhibit
really autonomous self-configuration and self-orchestration
capabilities. The MAS proposed in [2] exploited non-standard
logic inferences to support approximate match evaluation and
automated negotiation, so providing user and device agents
with embryonic social capabilities. In that case, however, no
explicit social capabilities, i.e., autonomous behaviors guided
by an interaction paradigm were provided.

Emerging paradigms for industrial IoT include bio-inspired
systems [11], cognitive systems [12] and social networks
[13]. The position paper in [13] is conceptually close to the
approach proposed here. It envisioned a social evolution of the
Internet of Things where objects are capable of establishing
mutual relationships and exploiting them to exchange informa-
tion and services more effectively, independently from human
social networks and user interactions. This marked a difference
w.r.t. early efforts [14], striving to make IoT objects aware of
people’s social context. A step forward toward social agency
can be identified in object blogging, i.e., an object’s ability
to annotate and publish its history and context on the Web
and/or in a mobile ad-hoc network, in order to foster intelligent
interactions. Some proposals required user intervention [15],
while later ones aimed at truly autonomous self-description
and decision-making [16]. The approach proposed here lever-
ages formal representation of both objects and contexts, but
also of actions and behaviours in an articulated scenario, to
make autonomous, semantically rich interactions among things
guided by social paradigms in a complex environment.

Social Networking Services (SNS) have transformed the
way people interact and cultivate relationships. A SNS typ-
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ically allows a user to:
– create a personal profile: users insert basic information about
themselves;
– link to other members in either symmetrical (e.g., friendship,
group) or asymmetrical (e.g., follower/followee) relationships;
– publish text and multimedia on a log visible to their contacts
(wall);
– tag their friends to explicitly associate them to a wall post;
– react to content shared by others with e.g., comments and
likes.
SNSs are massively used for both extrinsic (usefulness) and
intrinsic (enjoyment) value; this may explain why regular users
have high rates of continued intention to utilize them [17]. Fur-
thermore, usefulness of SNSs tends to grow as more users are
connected, and particularly complementary users [17], because
opportunities increase for finding interesting information and
needed services. These considerations can be transferred to
social networks of objects, where individual devices behave
like independent agents and can engage with one or more
peers for information and resource/service sharing. Actually,
it is reasonable to expect greater benefits in large and complex
networks, like typical BAS systems. The approach in [18] is
one of the first featuring social object capabilities in control
networks, even though the paper did not mention this aspect
explicitly. The proposal aimed at distributed OWL Knowledge
Base management and reasoning. Upon connection to the
network, each object proactively exchanged information with
other devices in a handshake process. The user could search
the network for a “requester” device, endowed with reasoning
capabilities, and exploit it to execute queries, which were
automatically distributed by the requester among “known”
devices. Unfortunately, the adopted query language limited
reasoning capabilities and hence the significance of developed
case studies.

Eventually, socially capable things should act for the benefit
of people. In [19] smartphones were identified as the bridge
through which people can be put in the loop of social IoT
solutions. Smartphones are always with their owners, store
many types of personal information and can collect further
data through embedded sensors. This makes them ideal for
learning about people and their context in order to act as peo-
ple’s digital counterpart (i.e., embodying dynamic personalized
profiles) in the objects’ choreography of the social IoT. A large
body of works already explored IoT-linked smartphones as
well as the idea of using companion devices (e.g., wearables)
to learn about and predict users’ habits, activities, preferences
and contexts [20], [21].

III. SEMANTIC WEB OF (SOCIAL) THINGS

In what follows the proposed framework and the related
architecture are reported.

A. Social paradigms for objects networks: semantics in
machine-to-machine interaction

The envisioned approach aims at object self-organization
in complex contexts through interaction paradigms borrowed
from social networks. Both interaction protocol and object

self-awareness give to devices extensive agency and auton-
omy capabilities, enabling them to share information, publish
requests and receive responses in a controlled interchange. The
final goal is to adapt the objects themselves to better comply
with the environment/surroundings situation. For this purpose,
the general SNS model recalled in Section II was adapted to
social objects as follows.

� A social object posts on its wall an individual profile,
describing its basic characteristics (device type, location,
hardware details) and the resources/services it is able to
provide, e.g., different functional profiles and configura-
tions it can take.

� Two social objects can establish a friendship relationship
if they intend to exchange information and services. In
particular, a device sends a friendship request; from the
moment the receiver accepts it, they became able to read
and write on each other’s wall. This mechanism grants
effortless system configuration and high scalability, since
enabled interactions are neither decided a priori nor by
a centralized entity.

� Each social object posts updates on its wall when its
settings or capabilities change, as well as information
produced through context sensing and analysis. A post
on a friend’s wall is interpreted as a request, instead,
triggering a reconfiguration of the friend device in order
to best adapt to the new situation.

� Tagging is used to ask a device to activate or deactivate
a specific service.

� A like is used as confirmation to a post at the end of the
reorganization process.

Social object interactions are supported by a Service-
Oriented Architecture (SOA), where shared information frag-
ments about devices, functional profiles and context are rep-
resented by resource/service descriptions. They are annotated
with semantic-based expressions referred to ontologies in Web
Ontology Language (OWL 2), formally grounded on DL
semantics. A notable aspect of the framework is that the
social network is completely distributed. No central platform
is needed to mediate interactions. All SNS primitives are
implemented as message exchanges among devices connected
to the BAS backbone network. Every object stores locally: the
list of its friends, each characterized by identity and addressing
information; its own wall; a cache of posts on friends’ walls.
Likes are stored along with the post they refer to.

In detail, the architecture of a social object is depicted in
Figure 1. It comprises the following layers.

� Communication manager. This module accesses the
object’s transceiver, sending and receiving messages on
the network.

� Sensor and actuator manager. It drives sensor and
actuators embedded in a device, allowing it to measure
information from or execute operations into the environ-
ment. This module may be very simple, like for an on/off
lamp, or complex, e.g., in the case of a weather station,
a washing machine or programmable sprinkler.

� Data and storage manager. This component manages
all data stored by the device. Its main task is to collect
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Fig. 1. Proposed architecture of a semantic social object

and mine data gathered from the sensor manager, in order
to detect one or more relevant events or conditions. By
exploiting the template method software pattern, this can
be accomplished through a range of techniques, depend-
ing on the available computational resources and the
complexity of required analysis. Elementary threshold-
based classifiers or more sophisticated machine learning
algorithms can be implemented. Furthermore, this module
manages local storage needed by the distributed social
networking protocol, as described above.

� Knowledge manager. Its goal is to fetch information
detected by the data manager and annotate it in OWL
language with respect to a reference ontology, which
expresses semantics of the conceptual knowledge for a
particular domain. An object can manage one or more
Knowledge Bases (KBs); each KB is formed by the union
of an ontology and a set of facts (i.e., the assertions),
obtained either from other devices through the upper
layers or from gathered and analyzed data through the
lower-level components. The knowledge manager can
include a semantic matchmaking and reasoning engine,
which enables an object to perform autonomously the
computations needed for service discovery and composi-
tion. Not all devices are expected to have enough compu-
tational resources to support a semantic matchmaker, as
it is the most onerous element of the whole architecture.
An object in the network with adequate computing and
energy resources can act as semantic facilitator on behalf
of its resource-constrained friends; this is decided upon
friendship establishment between two devices.

� Service manager. This module manages the available
functionalities of the device in a service-oriented fashion.

It commands the activation or deactivation of local ser-
vices and their composition into more complex ones by
means of workflows. For this purpose it exploits inference
procedures –provided at the knowledge manager layer–
on semantic annotations of service descriptions.

� Social presence manager. This high-level component
implements the social agent capabilities described above.
It accesses storage through the data manager to save infor-
mation about its own wall as well as friends’ profiles and
wall posts. Whenever the knowledge manager updates a
local KB with new facts (by annotating data related to
itself or its environment), the social presence manager
receives an update and is able to publish the annotation
in a new post on its wall, in order to expose its context
and/or internal modifications toward its friends. Simi-
larly, this component is notified by the service manager
whenever a service status changes, e.g., execution halts
due to completion or error. Social network interactions
occur through network messages via the communication
manager.

B. Autonomic building control: a semantic-based architecture

The proposed architecture integrates several semantic-
enabled devices and one or more matchmaking facilitators
exploiting automated reasoning in order to: (i) obtain a logic-
based ranking of available services, according to current status
of devices and home/building environment; (ii) maximize both
comfort and energy efficiency. The role of facilitator can be
taken by one of the service providers/consumers or by a sup-
port device in the network. Basically, the facilitator retrieves
environmental information from all devices connected to the
social network and annotations of available services, described
according to a reference ontology in ALN (Attributive Lan-
guage with unqualified Number Restrictions) DL, modeling
conceptual knowledge for the building automation problem
domain. The proposal relies on Semantic Web languages, and
particularly on Resource Description Framework2 (RDF) and
OWL 2, used for linking resources to domain ontologies. An
ontology and a set of individuals (i.e., service annotations)
build the Knowledge Base (KB) used for automated reasoning.

Reasoning tasks are executed by Mini-ME lightweight
mobile matchmaker [1], exploiting structural algorithms with
polynomial computational complexity for standard and non-
standard inference services on (unfolded and normalized)
concept expressions. Mini-ME was selected due to efficient
computations even on resource-constrained devices thanks to
a careful, customized implementation of both algorithms and
data structures. Given a request R (e.g., the system status
or a device request) and a supplied resource S (i.e., one
or more home functionalities) as concept expressions w.r.t.
a common TBox T , two standard reasoning services can be
used for semantic matchmaking: Concept Satisfiability allows
to determine whether constraints in R contradict explicitly the
ones in S; Subsumption check determines whether the resource
S satisfies all constraints in R. Unfortunately, full matches are

2RDF 1.1 Concepts and Abstract Syntax, W3C Recommendation 25
February 2014, https://www.w3.org/TR/rdf11-concepts/
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quite rare in real-life scenarios. In home environments, differ-
ent service annotations can even be partially in conflict. Due
to these reasons, the framework exploits the following non-
standard inference services to provide resource classification,
logic-based ranking and explanation of outcomes beyond the
trivial “yes/no” answer of satisfiability and subsumption tests.
- Concept Contraction: given a request R and a supplied
resource S, if they are not compatible with each other, Con-
traction determines which part of the request is conflicting with
S. If one retracts conflicting requirements in R, indicated as G
(for Give up), a concept K (for Keep) is obtained, representing
a contracted version of the original request. The solution G to
Contraction represents “why” R and S are not compatible;
- Concept Abduction: whenever request and resource are
compatible, but S does not completely satisfy R, Abduction
allows to determine what should be hypothesized in S in order
to obtain a full match, i.e., to make the subsumption relation
true. The solution H (for Hypothesis) to Abduction can be
interpreted as what is requested in R and not specified in
S. Both Contraction and Abduction also enable a logic-based
relevance ranking of a set of resources w.r.t. the given request,
by means of penalty metrics linked to G and H . They enable
graded match evaluation in a logically simpler way w.r.t. other
approaches such as Fuzzy logic and Rough sets;
- Concept Covering: in HBA scenarios it is often useful to
aggregate multiple low-complexity functionalities in order to
satisfy an articulated request. Non-standard reasoning task
based on the solution of Concept Covering Problem (CCoP)
can be used to: (i) cover (i.e., satisfy) features expressed in
a request as much as possible, through the conjunction of
one or more service instances, and (ii) provide explanation
of the uncovered part of the request. Given a request R and
a set of instances S = fS1, S2, ... , Sng (i.e., home service
annotations), where R and Si are satisfiable in the reference
ontology T , Concept Covering finds a pair hSc; Hi where Sc

includes concepts in S covering R w.r.t. T as much as possible
and H is the residual part of R not covered by concepts in
Sc.

Exploiting the non-standard inferences described above,
home services retrieved by the matchmaking facilitator will
be evaluated, computing a relevance score with respect to
the received request. In particular, an algorithm based on the
solution of CCoP has been implemented to select best suitable
functionalities to be activated in order to fulfill users’ or system
requirements, through the conjunction of available services
exposed by home devices. The CU will be also able to detect
possible inconsistencies between system status and selected
services and to explain the matchmaking results highlighting
issues or conflicts. Noteworthy is the auto-adaptation capa-
bility of the system which is intrinsically structured to react
to environmental and/or users stimuli. Basically, the social
community acknowledges modifications inducted by foreign
factors directly materializing external modifications (e.g., no
photovoltaic energy provision) and gradually modifies the
status of its components to better deal with novel situation
(e.g., switch from heat pump to gas boiler).
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IV. CASE STUDY: “JUST A PERFECT DAY”

A basic case study referred to service orchestration in home
and building automation was developed to highlight capabili-
ties of the proposed framework and to explain implementation
details of the approach. Let us consider the following example
scenario: John’s house is composed of three rooms and a roof
garden, as shown in Figure 2 (garden in light green). Several
semantic-enabled devices are connected to the home social
network: (A) an air conditioner; (B,F) two rolling shutter
controllers; (C) a basic central unit (CU), which acts as
semantic matchmaking facilitator; (E,G) two dimmable lamps.
In order to improve the air conditioning within the home, John
buys a smart weather station (D) and places the new device
on the roof garden. As shown in Figure 3, when turned on,
the station will identify the surrounding social network trying
to connect to it.

To connect a new device, the user only provides the login
settings required to sign up and communicate with the net-
work. Then the CU registers the station on the social network
enabling interactions with all other logged in devices. Now the
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weather station can become friend with one or more devices.
The shutter controller (B) reads the profile of the station to
verify if it is a potential friend (e.g., verifying whether both
devices are located in the same room or share annotations
referred to the same ontology, or checking the exposed services
and their usefulness). In this case, a friendship request is
sent due to pertinent services provided by the weather station.
Establishing a friendship relation (as in the second section of
Figure 3), each friend device is able to directly read the wall
(i.e., current status, detected events and service annotations)
of an object without the participation of the CU. In this
way the shutter controller can read the wall of the weather
station and retrieve the last wall post, containing useful data
about detected outdoor conditions. Each post contains an
OWL annotation related to the data measured by all sensors
embedded on the station (e.g., luminosity, humidity, temper-
ature). In the same way, also the second shutter controller
(F) sends a friendship request to the weather station, whereas
other two friendships (F-G and B-E) are established between
each hshutter controller,lampi pair placed in the same room.
All these dynamically generated relations replace the manual
binding needed in classic HBA systems to connect devices
together. For example, a friendship could be also defined
between a rocker switch and a lamp to bind the actuator device
to the specific object to control, according to the annotated
profile exposed by each home device.

It’s a raining evening, a strong wind blows from the west
and the weather station detects a decreasing temperature. A
possible formalization of the post, reported as an excerpt of the
reference KB, is shown in Figure 4 (W S1). For each annota-
tion (i.e., individual), the graph highlights the nodes (i.e., OWL
classes) composing the description. Edges represent universal
quantification restrictions (8) over the specific object property
indicated for each group of classes. The shutter reads this post
and starts a local matchmaking process to activate/deactivate
its functionalities (e.g., open or close the shutter) according to
the detected weather conditions and its service descriptions,
shown in Figure 5. In particular, Full Close service is activated
because it is more suitable in case of rain and strong wind.

It is possible to notice a direct connection (i.e., a friendship)
between the two devices is very useful, but in case of process-
ing based on a friendship relationship other devices are not
involved in the matchmaking process and some features of the
weather station annotation remain uncovered. For this reason,
the proposed approach also enables the self-orchestration of
multiple devices, exploiting a matchmaking facilitator. In this
case an object can send a request by writing a post on
the CU wall to modify the home environment and satisfy
specific requirements. After a hard workday, John goes to
sleep. During the night, the weather station detects a relevant
change (rain stops and wind intensity decreases), so it posts a
new message not only on its wall but also on the CU wall. The
latter action corresponds to an explicit request (W S2 in Figure
4), which triggers a Concept Covering process involving all
devices connected to the home network as illustrated in the
bottom section of Figure 3. In this case, the CU reads the
walls of connected objects and retrieves annotations about
all exposed services in order to verify whether the request is
already completely covered or the activation of further services
is needed. With respect to the previous scenario, now the air
conditioner services (reported in Figure 6) can be involved to
satisfy the request. According to W S2, the covering procedure
highlights as the shutter should be half closed (instead of fully
closed) whereas the air conditioning system should activate the
heating functionality due to the low temperature. To enable
these services, the CU tags each selected device in a post
written on the respective wall along with the name of the
service. Finally, a like is sent to the weather station as a
response, represented as a score used to quantify how much
home services satisfied the request. It is defined as a real value
between 0 (request uncovered) and 1 (request fully covered).

It is 7:00 A.M., John wakes up; the morning is sunny.
The weather station writes a new post (W S3 in Figure 4)
on the CU wall to adapt the home according to the newly
detected conditions. The CU starts another covering process
and suggests to turn off the heating service and completely
open the shutter, to leverage the high outdoor luminosity. In
this way, John finds a very comfortable environment, without
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TABLE I
DESCRIPTION OF REQUEST DATASET

ID Size
(Byte) Concepts Nested

prop.
Selected
services

Involved
devices

Covering
score

R1 779 2 0 1 1 100%
R2 812 2 0 2 2 91.66%
R3 1532 6 1 3 2 97.37%
R4 1553 6 1 5 2 100%
R5 2195 10 2 5 2 81.81%
R6 2197 10 2 5 2 80.30%

any explicit interaction with the surrounding devices, and he
can start another perfect day.

The number of devices and the length of request and
service descriptions in the examples were kept low for easier
understanding of the proposed framework, but the adopted
framework inferences allow managing more detailed specifi-
cations with complex conditions derived from modeling in the
reference ontology.

V. EXPERIMENTAL EVALUATION: RESULTS AND
COMMENTS

Performance evaluation of the proposed approach has been
carried out simulating the above case study, including the
following devices: the central unit; an air conditioner (DA)
exposing 4 semantic-based functionalities; a shutter controller
(DB) having 18 services; a weather station (DC) only acting
as requester device. The central unit was implemented using a
Raspberry Pi Model B3, equipped with a single-core ARM11
CPU at 700 MHz, 512 MB RAM (shared with GPU), 8 GB
storage memory on SD card, Raspbian Wheezy OS and 32-
bit Java 8 SE Runtime Environment (JRE, build 1.8.0-b132).
Semantic-based devices were built exploiting two different sets
of development boards:
- Low-Resource (LR) devices: presenting minimal processing
and memory. Each device is composed of an Arduino Due4

board (ARM Cortex-M3 CPU, 96 KB SRAM, 512 KB flash
storage memory) equipped with a WiFi Shield5. All devices
communicate through an IEEE 802.11g wireless local net-
work;
- Medium-Resource (MR) devices: embedded boards with more
powerful CPU (400+ MHz), larger RAM memory (256+ MB),
also supporting JRE. In particular, two devices (DA and
DB) were implemented using the Intel Edison Kit6 whereas
the third one (DC) exploiting a Zolertia WSN Gateway7.
No specific-purpose software frameworks have been further
adopted.

In both cases, experiments were conducted exploiting a
shared dataset of 6 requests, shown in Table I, with growing
complexity in terms of number of concepts and nesting level
of property restrictions. Tests were divided in the following 7
tasks to identify and evaluate specific features characterizing
their performance: (A) KB Init: load and initialize the reference

3http://www.raspberrypi.org/products/model-b/
4http://www.arduino.cc/en/Main/ArduinoBoardDue
5http://www.arduino.cc/en/Main/ArduinoWiFiShield
6http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
7http://zolertia.sourceforge.net/wiki/index.php/Mainpage:Gateway

TABLE II
PROCESSING TIME

Time (ms)
Task LR Devices MR Devices
(A) Init KB 11721
(B) Login (single device) 1429 143
(C) Friendship 4031 24
(D) Process Request 257
(E) Retrieve Services (single device) 3868 1166
(F) Covering 447
(G) Select Devices 618

KB when the CU starts; (B) Login: each device sends a
login message to the CU and receives a confirmation ACK;
(C) Friendship: shutter controller and weather station become
friends; (D) Process request: CU receives a request from a
device and saves it locally; (E) Retrieve services: CU retrieves,
preprocesses (executing concept unfolding and normalization
[1]) and loads into the KB the annotations exposed by
each home device; (F) Covering: CU performs the Concept
Covering and selects most suitable functionalities to satisfy
the request; (G) Select Device: CU identifies home devices
exposing the selected functionalities. Each test was repeated
three times and average values were taken and reported in
Table II. In particular, tasks A-D-F-G are performed by the
CU and related processing times are independent from the
connected devices whereas steps B-C-E, including operations
between the CU and one or more objects, were evaluated
for both device sets. The main goal was to verify how
the framework performance varies according to the different
hardware exploited to build home devices. Moreover, times for
tasks B and E are referred to a single device and should be
multiplied for the overall number of devices connected to the
CU; to reduce both login and retrieval time, a multi-threaded
implementation enables parallel communications with several
devices. KB initialization was the slowest task but required
time is not worrisome, since loading occurs once per ses-
sion. On the contrary, covering task was very fast thanks
to the inference algorithms of Mini-ME micro matchmaker
[1], expressly designed and implemented for low performance
devices. As expected, LR devices required a longer time to log-
in and send service annotations. This is due to the slower I/O
and network operations (e.g., establish a wireless connection,
read from/write to the flash memory) on Arduino boards.
In particular, the processing time difference is remarkable
for the friendship task where both involved devices have to
manage messages transmitted over the network and perform
storage read/write operations, as shown in Figure 3. It is useful
to point out, however, machine-to-machine interactions are
completely autonomous; users do not trigger the process and
are not involved in any way, so even adopting very resource-
constrained nodes does not affect user experience; only for
time-critical services (e.g., for safety and security) the use of
medium-resource devices is clearly recommended.

Another parameter adopted to evaluate the framework was
the time required to process a request with increasing com-
plexity. Tasks D-F-G depend on the specific request; task F
was also split into two subtasks: load request, time needed to
load the received annotations into the KB; solve CCoP, time to
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Fig. 7. Processing time for tasks depending to request complexity
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Fig. 8. Memory usage and CPU load on the central unit

execute the Concept Covering algorithm [1]. For each of them,
the running time was measured as reported in Figure 7. It can
be noticed the complexity of the request affected time only
slightly. Time required to save and load the request increased
due to the size of the annotation, which was larger for more
complex requests. Concept Covering time slightly increased
because complex requests included more preferences, hence
more functionalities were selected to obtain the maximum
covering score. As a consequence, more devices (exposing
selected services) were identified during the subsequent step.
Memory usage and CPU load values8 of CU are shown in
Figure 8. Also in this case, request complexity had a moderate
influence on both parameters. CU required very low memory
on average: only 6.02 MB (Heap) and 9.89 MB (Stack).
Memory peak values were always under 11.50 MB, which are
reasonable values for embedded systems. Finally, CPU load
presented a uniform trend, with an average value of 65.6%.

Memory and processing performance were also tested for
Arduino boards (LR) and Java-based (MR) devices. As re-
ported in Figure 9, framework requirements are very low on
Intel Edison boards and Zolertia GTW with a memory peak
under 8 MB for both heap and stack memory and an average
CPU load of about 11%. For Arduino boards, Figure 10 shows
test results related to the sketch (i.e., program) size and the
amount of flash memory needed to save all configuration files,
storing data about device wall, profile, friendship information
and service annotations. Only for the weather station, the
last parameter refers to the sensor annotation defined starting
from collected raw data. Sketches required about 35 KB on
each Arduino board, whereas a maximum of 17 KB are
stored on the flash memory to manage all data about the
shutter controller device, exposing 22 service annotations and
representing the worst case in the proposed case study.

8Obtained with Oracle JConsole monitoring tool included in Java 8 JDK
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Fig. 10. Memory usage on Arduino boards

Both horizontal and vertical scalability are important issues.
When the system scales (both horizontally –in terms of com-
ponents number– or vertically –in terms of interacting system
of systems), we foresee to find predictable and manageable
the performance behavior (times and information volumes).
The envisioned knowledge-oriented model should induce less
continuous but more significant information flows, moving
complexity toward the annotation and reasoning phases which
incorporate large data corpuses in synthetic semantic descrip-
tions. Reference performance of both these steps has been pre-
sented here, it refers to a decentralized and local computation
which is only slightly influenced by the system size. Anyway,
an ongoing framework deployment in a large-scale testbed
is directed to corroborate or not these conclusions, possibly
drawing attention to specific implementation optimization able
to reduce average response times and memory consumption.

VI. CONCLUSION

The paper presented a novel semantic-based social object
framework for home and building automation. The proposed
approach enables autonomic machine-to-machine interactions
and a semantic-enhanced service discovery grounded on the
formal annotation of objects’ features and capabilities. The de-
vised framework was implemented in two prototypical testbeds
exploiting several types of off-the-shelf devices, in order to
verify both feasibility and effectiveness in case of different
hardware specifications.

Future extensions will include further investigation and
extension of social presence capabilities for smart objects,
including novel interaction patterns. It is also ongoing the
activity of gradually extending the testbed up to building
and district dimension in real HBA installations following
funded projects agreements on this theme. Particularly, energy
provisioning balance and comfort enhancement are goals to be
pursued in these larger-scale scenarios incorporating hundreds
of components. System deployment is expected to evidence
possible need for implementation optimization to comply with


