
Schema-summarization in Linked-Data-based feature
selection for recommender systems

Azzurra Ragone1, Paolo Tomeo2, Corrado Magarelli2, Tommaso Di Noia2, Matteo Palmonari1
Andrea Maurino1, Eugenio Di Sciascio2

1 University of Milan Bicocca, 2 Polytechnic University of Bari
1 firstname.lastname@unimib.it, 2 firstname.lastname@poliba.it

ABSTRACT
Recommender systems are emerging as an interesting appli-
cation scenario for Linked Data (LD). In fact, by exploiting
the knowledge encoded in LD datasets, a new generation of
semantics-aware recommendation engines have been devel-
oped in the last years. As Linked Data is often very rich
and contains many information that may result irrelevant
and noisy for a recommendation task, an initial step of fea-
ture selection is always required in order to select the most
meaningful portion of the original dataset. Many approaches
have been proposed in the literature for feature selection
that exploit different statistical dimensions of the original
data. In this paper we investigate the role of the semantics
encoded in an ontological hierarchy when exploited to select
the most relevant properties for a recommendation task. In
particular, we compare an approach based on schema sum-
marization with a “classical” one, i.e., Information Gain. We
evaluated the performance of the two methods in terms of
accuracy and aggregate diversity by setting up an experi-
mental testbed relying on the Movielens dataset.

1. INTRODUCTION
In the last years we have witnessed a flowering of semantics-
aware solutions for Recommender Systems (RSs) exploiting
information held in knowledge graphs, as the ones in the
Linked Data (LD) Cloud. Several approaches using LD to
build RSs have been proposed in literature, however, almost
no one tackles the issue of automatically select the best sub-
set of LD-based features. Usually, the feature-selection pro-
cess is done manually by choosing the properties more ”suit-
able” for the scenario taken into account. For example, in
a scenario related to movies, properties as dbo:starring or
dbo:director look more relevant than dbo:releaseDate or
dbo:distributor. As well as for the music domain, proper-
ties as dbo:genre and dbo:writer look more important than
dbo:producer or dbo:recordedIn. However, without an au-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’17, April 3-7, 2017, Marrakesh, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . . $15.00
http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx

tomatic feature selection process, the human intervention is
required every time a new domain is chosen, while it could
be good to have a general way to select properties regard-
less of the domain. Moreover, selecting the top-K features to
use in a recommendation scenario is somehow equivalent to
discover which properties in a LD-dataset (e.g., DBpedia)
encode the knowledge useful in the recommendation task
and which ones are just noise[15]. In many machine learn-
ing tasks, as in recommendation systems, there is the need
to perform a selection of features and this feature selection
could not be straightforward when attributes are embedded
in a knowledge graph, as it is the case of LD.

Today we have a huge amount of ontological data available
on the Web as the one in the LD cloud. The importance
of the ontological schema in such knowledge bases is often
not fully exploited in data management tasks, indeed many
times only the extensional part is used, while ignoring all the
intensional part, which has a primary importance, being
custodian of the meaning of data. In many graph-based
recommendation systems the knowledge exploration starts
from the data and goes on following the fact graph, without
taking into account the knowledge lying in the ontology and
then in its class hierarchy. In this paper we investigate if
ontological schema summarization can be used as a feature
selection technique for LD-based recommender systems and
compare the results with other ”well-know” techniques of
feature selection. We performed an experimental evaluation
on the Movielens dataset∗ in order to analyze how the choice
of a particular feature selection technique may influence the
performance of the recommendation algorithm in terms of
accuracy and aggregate diversity.

The remainder of the paper is organized as follows: Section
2 reviews related literature while in Section 3 we analyze the
feature selection process and the feature selection technique
we take as a baseline in our evaluation. Section 4 describes
the LD summarization process we perform with ABSTAT.
The graph-based kernel methods used in our recommenda-
tion system are described in Section 5 together with the met-
rics used to evaluate our recommendation algorithm. The
experimental evaluation of the two feature selection tech-
niques is presented in Section 6. Discussion and future work
close the paper.

2. RELATED WORK
∗Available at http://grouplens.org/datasets/movielens

Recommender systems can be divided into two main classes:
Collaborative Filtering and Content-Based systems. The
former try to predict the users interests exploiting the statis-
tical information about the ratings of all the users. The un-
derlying assumption is that users with similar ratings have
similar tastes, and similarly rated items may be of inter-
est for the same users. However, collaborative filtering rec-
ommender systems suffer from the data sparsity problem.
Conversely, content-based recommender systems only use
the descriptive content of the item - such as tags, genre,
textual description, etc. - in order to recommend items sim-
ilar to the ones the user liked in the past. Such systems
do not suffer from data sparsity, since they do not need
to compare the ratings of different users[13]. However, de-
scriptive content information about the items is not always
available or sufficient. A solution to such problem is rep-
resented by the exploitation of Linked Open Data sources
like DBpedia[3]. Many approaches have been proposed for
exploiting information extracted from Linked Open Data in
recommendation tasks. Heitmann and Hayes [9] proposed
one of the first approach for using Linked Open Data in a
recommender system. A system for recommending artists
and music using DBpedia was presented in [19]. Several
other approaches have been proposed afterwards, such as a
knowledge-based framework leveraging DBpedia for cross-
domain recommendation task [4], a content-based context-
aware method able to adopt a semantic representation based
on a combination of distributional semantics and entity link-
ing techniques [16], a hybrid graph-based algorithm based on
learning-to-rank method and path-based features extracted
from heterogeneous information networks built upon DBpe-
dia and collaborative information [17]. To the best of our
knowledge, the only approach proposing an automatic selec-
tion of LOD features is the one in [15] where seven different
techniques for automatic selection of LOD-based features are
compared. Differently from[15], we are not interested in the
best performing techniques for feature selection. Here we
want to investigate if the knowledge encoded at ontological
level can be used to select the most significant properties in
a LD-dataset for recommendation purposes.

3. FEATURE SELECTION
Feature selection is a process to automatically select the at-
tributes in a dataset that are most relevant to the predictive
model at hand. Feature selection is useful to remove irrele-
vant or redundant attributes that do not contribute to the
accuracy of the predictive model or that can, indeed, de-
crease the accuracy of the model itself. Feature selection,
simplifying the problem, reduces the overfitting risk. The
objective of feature selection is three-fold: (i) to improve
the prediction performance of the predictors, (ii) to pro-
vide faster and more cost-effective predictors, (iii) to give a
better understanding of the process that generate the data
[8]. Feature selection has a prominent role when we have
noise data; lots of low frequent features or, conversely, few
popular features assuming always different values; too many
feature comparing to samples, or complex model. A good
feature selection technique should exclude features that give
no, or little, information contribution. There are three typ-

ical measures of feature selection, the first are known as
”filters”, they apply a statistical measure to assign a score
to each feature (e.g. Information gain, Entropy, Mutual in-
formation, KL divergence, Gini index, Chi-square test, ecc.).
Here the feature selection process is a preprocessing step and
can be independent from learning[5]. The second are called
”wrapper”, here the problem is modeled as a search prob-
lem, the learning system is used as a black box to score sub-
sets of features (e.g. forward selection and backward elim-
ination)[12]. Finally, there are the embedded methods
that perform the selection within the process of training (e.g.
Nested subset methods)[8]. When dealing with recommender
systems the feature selection process may vary depending on
the purpose of the recommendation. We may want to max-
imize accuracy (to recommend the most similar items to
the user) or diversity (e.g. in music domain to recommend
music from different genres). A relevant task is to determine
the impact of a particular feature selection technique on the
behavior of the recommendation system algorithm. Indeed,
some techniques can improve the accuracy of the recom-
mendation, some improves the diversity, others can provide
a good trade-off between diversity and accuracy. Among all
the different feature selection techniques mentioned before
we selected the Information Gain, Information Gain Ratio,
Chi-squared test and Principal Component Analysis as their
computation can be adapted to categorical features, as the
LOD ones. Then, the features selected from each technique
have been used as an input of the graph kernel-based algo-
rithm we use in the recommendation scenario (See Section
5). Finally, we chose the Information Gain as a baseline
to compare with as it was the best performing techniques
among the four analyzed†.

3.1 Information Gain
Information Gain (IG) is defined as the expected reduction
in entropy occurring when a feature is present versus when
it is absent. For a feature fi, IG is computed as [15]:

IG(fi) = E(I)−
∑

v∈dom(fi)

|Iv|
|I|
∗ E(Iv)

where E(I) is the value of the entropy of the data, Iv is
the number of items in which the feature fi (e.g. starring
for movies) has a value equal to v (e.g. Al Pacino in the
movie domain), and E(Iv) is the entropy computed on data
where the feature fi assumes value v. The IG of a feature
fi is higher as the lower is the value of the entropy E(Iv).
Features are ranked according to their IG and the top-k ones
are returned.

4. SCHEMA SUMMARIZATION WITH AB-
STAT

Linked data summarization is the process of extracting a
summary of an input linked data set, such that this sum-
mary is smaller (in size) than the input data, but retains in-
formation useful for certain tasks. Relevance-oriented sum-
maries capture subsets of the input data sets and/or ontolo-
gies. These subsets are estimated to be more relevant for the

†
The interested reader can see the results obtained with other

feature selection techniques here: https://github.com/sisinflab/

SAC2017/FeatureSelection

users according to multidimensional relevance criteria [24].
Vocabulary-oriented summaries describe the usage of vocab-
ularies, e.g., ontologies, used in a dataset. These summaries
are usually defined so as to be complete, i.e., to provide infor-
mation about every element of the vocabulary/ontology used
in the data set [22]. Compression-oriented summaries are
proposed to compress the original data so as to support cer-
tain computational tasks, e.g., autocomplete of queries [11].
Vocabulary-oriented summaries that provide complete de-
scriptions of vocabulary usage may support feature selection
by providing relevant information about every possible fea-
ture, i.e., property, in the data set. One advantage of using
such approach is that summaries can be accessed via web in-
terfaces. If summaries are proved useful for feature selection,
features can be selected before processing the entire data set,
by accessing summaries online at limited cost. Once the fea-
tures are selected, a user may download a subset of an entire
data set that is known to be useful for recommendation.

In this paper we use summaries produced by a vocabulary-
oriented summarization framework named ABSTAT‡. AB-
STAT takes a linked data set and - when available - one or
more ontologies used in this data set as input, and returns a
summary. The summary consists in a set of patterns having
the form 〈C,P,D〉, with C and D being types, i.e., concepts
or datatypes, and P being an RDF property. We refer to C
and D as source and target types, respectively. Each pattern
〈C,P,D〉 tells that there exist some instance of type C linked
to some instance of type D through the property P . For ex-
ample, a pattern 〈dbo:Film, dbo:starring, dbo:Actor〉 tells
that there are instances of dbo:Film linked to instances of
type dbo:Actor through the property dbo:starring in the
data set. The summary is complete for relational assertions
in an RDF data set, i.e., assertions about individuals: for
every relational assertion < x, p, y > that exist in the data
set, at least one pattern is generated, i.e., every such as-
sertion is represented by at least one pattern. The genera-
tion of these patterns is based on explicit typing assertions,
e.g., 〈dbr:Tom_Cruise, rdf:type, dbo:Actor〉 or on implicit
typing assertions (for literals), e.g., 1962-01-01xsd:date ex-
tracted from the dataset. Observe that since one resource
can be subject of several typing assertions, more than one
pattern can be generated from one relational assertion.

Differently from other approaches that also extract vocabulary-
based patterns from linked data sets [14, 7], ABSTAT ap-
plies a pattern minimalization technique leveraging the re-
lations between types defined in the ontologies (when the
ontologies are used in the summarization process). Instead
of generating all patterns that can be generated from one
relational assertion according to the definition above, only
patterns based on minimal types of resources are gener-
ated. For example, if dbo:Actor is defined as subclass of
dbo:Person in the ontology, from a relational assertion such
as 〈dbr:Rain_Man, dbo:starring, dbr:Tom_Cruise〉 and two
typing assertions 〈dbr:Tom_Cruise, rdf:type, dbo:Actor〉 and
〈dbr:Tom_Cruise, rdf:type, dbo:Person〉, ABSTAT gener-
ates a unique pattern 〈dbo:Film, dbo:starring, dbo:Actor〉,
discarding the pattern 〈dbo:Film, dbo:starring, dbo:Person〉
as redundant. Of course, there may be films that star enti-

‡
ABSTAT summaries for several datasets can be explored at http:

//abstat.disco.unimib.it:8880/

ties for which dbo:Actor does not occur as minimal types,
because, e.g., these entities are more generically defined as
instances of dbo:Person. Thus, a pattern like the one repre-
sented by 〈dbo:Film, dbo:starring, dbo:Person〉 may still
occur in the data set, telling that there are films starring
entities that are not specifically defined as dbo:Actor, but
generically as dbo:Person. Additional information provided
in summaries and of major importance for feature selection
is pattern frequency, which counts the occurrences of pat-
terns in the data set. For example, 〈dbo:Film, dbo:starring,
dbo:Actor〉[10662] tells that 10662 instances of dbo:Film are
linked to instances of type dbo:Actor through the property
dbo:starring in the data set. For more details about the
summarization process, the impact of minimalization on the
size of extracted summaries, the use of ABSTAT summaries
to support data set understanding, and the services through
which summaries are accessible via web interfaces we re-
fer to a previous paper [22]. For the work in this paper
we extended ABSTAT with APIs that ease the interaction
with third party applications. In particular, APIs support
look up of patterns using filters on source types, properties
and target types, plus ranking based on pattern frequency.
Using these APIs we have provided a way to look up top
frequent properties for a source type, ranked by occurrence.
Using this functionality, we have defined a top-k property
feature selection with ABSTAT as follows: given the
input type C = dbo:Film, we select all patterns with C as
source type and order them by frequency; then we extract
the top-k distinct properties from the ordered list of pat-
terns (discarding data type properties as they are not present
in the ranked list returned by IG). In this approach we used
summaries extracted from DBpedia dumps that focus on
the relational content in the knowledge base and do not in-
clude annotation properties used to link entities to external
resources, e.g., wikilinks, images and wikipedia subjects.

5. GRAPH KERNELS
In [18] two graph-based kernel methods for LOD-enabled
recommender systems have been proposed. The first is based
on an entity-based item neighborhood mapping, while the sec-
ond on path-based item neighborhood mapping. They rely on
graph-based Item Representation on knowledge graph de-
fined as G = {t|t ∈ E × R × E} where E is the set of
entities, R is the set of properties and I ⊆ E the items (e.g.
movies), considered as a particular type of entities. In the
two kernels, the non-directed version of the original RDF
graph is considered. For a generic item i it is possible to
define its h-hop neighborhood graph Gh

i as the subgraph of
a knowledge graph G induced by the set of triples involving
entities in Eh

i . Where Eh
i is the set of entities reachable in

at most h hops form i according to the shortest path in G.
Starting from this graph-based representation it is possible
to define two feature mappings as in the follow.
Entity-based item neighborhood mapping. In this ap-
proach, a feature in a mapping represents an entity in E with
a score that indicates the weight associated to that entity in
Gh

i . The resulting feature vector φE(Gh
i) is:

φE(Gh
i) = (wi,e1 , wi,e2 , ...wi,em , ..., wi,et)

where the weight associated to the entity em is computed as

wi,em =
h∑

l=1

αl · cl,em with αl = 1
1+log(l)

and

cl,em = |{(en, p, em) | en ∈ Êl−1
i ∧ em ∈ Êl

i}
⋃

{(em, p, en) | em ∈ Êl
i ∧ en ∈ Êl−1

i }| (1)

where Êl
i = El

i \El−1
i is the set of entities exactly l hops far

from i. While cl,em denotes the number of triples connecting
em to entities in the previous hop (l− 1), whether em could
be the subject or object of the triple. In other words, cl,em
indicates the occurrence of the entity em in the item neigh-
borhood at distance l. The more the entity em is connected
to neighboring entities of i, the more it is descriptive of i. αl

is a decay factor depending on the distance l from the item
i, penalizing farther entities from the item. It allows one to
take into account the locality of those entities in the graph
neighborhood.
Path-based item neighborhood mapping. Differently
from the previous mapping, here a feature is represented as
a sequence of nodes (path) in G. Given two entities e1 and
en, we call path the sequence of nodes e1 ·e2 ·. . .·en−1 ·en met
while traversing the graph to go from e1 to en. Therefore,
each feature refers to several variants of paths rooted in the
item node i. We first collect all the paths rooted in i which
can be indicated as sequence of entities i ·e1 ·e2 · . . . ·en−1 ·en.
Then, from those paths, other features are defined consider-
ing every sub-paths. Specifically sub-paths are composed by
only those entities progressively farther from the item. Con-
sidering the path given above we build the following features:
e1 · e2 · . . . · en−1 · en, e2 · . . . · en−1 · en, ..., en−1 · en, en. This
choice allows to explicitly represent substructures shared be-
tween items with no overlapping in their immediate neigh-
borhoods but somehow connected at farther distance. Items
connected to the same entities have same common structures
because both closer and farther entities are shared. Items
connected to different entities which are linked directly or
at a farther distance to same entities share less or none sub-
paths depending on how much far the common entities are,
if any.

In formula, let Pi be the set of paths rooted in i and P ∗i
be the list of all possible sub-paths extracted from them.
Let pm(i) and p∗m(i) be the m − th elements in Pi and
P ∗i , respectively. Then, the feature vector is: φP (Gh

i) =
(wi,p∗1

, wi,p∗2
, ...wi,p∗m , ..., wi,p∗t

) where each weight wi,p∗m is
computed as:

wi,p∗m =
#p∗m(i)

|pm| − |p∗m|

with |pm| indicating the length of path pm to which p∗m(i)
refers and #p∗m(i) the occurrence of p∗m(i) in P ∗i . The de-
nominator is a discounting factor taking into account the
difference between the original path pm and its sub-path
p∗m. The shorter the sub-path the more the discount as the
sub-path contains entities farther from the item.

Results presented in [18] about the two graph-based kernel
methods show significant improvements with respect to state
of the art collaborative algorithms on two different datasets:
one of sounds coming from Freesound.org, the other one
of songs gathered from Last.fm and Songfacts.com. They
also show that semantic enrichment of the initial knowledge

graph performed by means of entity linking techniques is a
good choice to boost the performances of a recommendation
system in terms of novelty and aggregate diversity.

5.1 Metrics
For evaluating the quality of our recommendation algorithm
(given a particular feature selection technique) we use four
metrics, as each one of them measures a different dimen-
sion. To evaluate recommendation accuracy, we use Preci-
sion and Mean Reciprocal Rank (MRR). Precision@N is a
metric denoting the fraction of relevant items in the top-
N recommendations. Let rel(u, i) be a boolean function
that represents the relevance of an item i for the user u,
with value 1 for relevant and 0 for non-relevant items, then
Precision@N is calculated as follows:

Precision@N =

∑N
i=1 rel(u, i)

N
(2)

MRR computes the average reciprocal rank of the first
relevant recommended item, and hence results particularly
meaningful when users are provided with few but valuable
recommendations (i.e., Top-1 or Top-3)[21]. MRR is com-
puted as:

MRR =
1

|U |

|U|∑
i=1

1

ranki

(3)

where U is the set of users and ranki is the rank position
of the first relevant recommendation for the i-th user. To
evaluate aggregate diversity, we consider catalog cover-
age (the percentage of items in the catalog recommended at
least once) and aggregate entropy [1]. The former is used
to assess the ability of a system to cover the item catalog,
namely to recommend as many items as possible. While
the latter measures the distribution of the recommendations
across all the items, showing whether the recommendations
are concentrated on a few items or are better distributed.
The coverage is a valuable measure for systems that recom-
mend lists of items. The metric is computed as follow:

Coverage =
|
⋃

u∈U IL(u) |
| I |

(4)

where IL(u) is the set of items contained in the list L for
user u and I is the set of all available items (i.e. the catalog).
Aggregate entropy can be computed as:

AggrEntropy = −
∑
i∈I

(
rec(i)

total

)
ln

(
rec(i)

total

)
(5)

where rec(i) is the number of users who received the item i
as recommendation, and total the overall number of recom-
mendations across all users. In a good recommender system
there should be a trade-off between accuracy and diversity,
diversity should be improved while maintaining adequate
accuracy.

6. EXPERIMENTAL EVALUATION
The evaluation of the two feature selection methods has
been done via the well-know Movielens 1M dataset. In

Entity-based Graph kernel Top-K features Precision@10 MRR@10 itemCov@10 aggrEntropy@10

IG
5 0.02327 0.15578 0.54262 8.96
10 0.01734 0.13599 0.90658 10.24
15 0.02055 0.14685 0.91989 10.19

ABSTAT
5 0.02035 0.14694 0.54953 9.12
10 0.01651 0.13705 0.64346 9.42
15 0.02062* 0.13757 0.67417 9.42

Path-based Graph kernel Top-K features Precision@10 MRR@10 itemCov@10 aggrEntropy@10

IG
5 0.02266 0.16248 0.58971 9.12
10 0.01518 0.13221 0.88252 10.26
15 0.01387 0.13069 0.89762 10.25

ABSTAT
5 0.02026 0.15310 0.54825 9.13
10 0.01519 0.13331 0.57461 9.33
15 0.01726* 0.13510* 0.62606 9.46

Table 1: Experimental results using the entity-based and the path-based Graph kernel recommendation
algorithms.

order to enrich it with information from Linked Data, we
started from a dump of the DBpedia dataset § and we lim-
ited it to the movie domain by linking movies in Movielens
dataset with their corresponding DBpedia entries. Since not
all the movies in the dataset have a corresponding resource
in DBpedia, the final reduced dataset is composed by 3689
movies, 4297 users and 942590 ratings.
Feature pre-processing. Our dataset includes a large
amount of features and, generally speaking, LOD dataset
may have a quite large feature set that could be, at the
same time, very sparse. For example, in our dataset the
properties ”dbp:artDirection” or dbp:precededBy are very
specific with lots of missing values. On the other hand, prop-
erties as dbo:wikiPageExternalLink or owl#sameAs have al-
ways different and unique values, so they are not informative
at all for a recommendation task. For this reason, before
starting the feature selection process with IG, we performed
a preliminary step to reduce redundant or irrelevant features
that bring little value to the recommendation task, but, at
the same time, pose scalability issues. The pre-pocessing
step has been done following [20], we fixed two thresholds:
one for the missing values pm = 99% and one for the dis-
tinct values pd = 98.9% and, then, we discarded features for
which we have more than pm of missing values and more
than pd of distinct values. From 247 initial properties, after
such a pre-processing step we obtained 41 properties. No-
tice that we had to perform this pre-processing step only to
the benefit of IG, as for ABSTAT this step was unnecessary.
Indeed, in ABSTAT properties with lots of missing values
go automatically at the end of the ranking, so they are never
selected if we are interested in the top-N ones.
Recommendation algorithm The two graph-based ker-
nels proposed in Section 5 were used to compute the simi-
larity between pairs of items in the dataset. Indeed, given
the graph-based nature of the underlying LOD dataset they
result an ideal candidate to evaluate how similar two items
are by comparing the resources which can be reached by ran-
dom walks on the graph [18]. Indeed, such similarity values
are used to recommend to each users the items which result
most similar to the ones she has liked in the past. Specif-
ically, we implemented a content-based recommender sys-
tem based on an item-based k-Nearest Neighbors algorithm.
More formally, the formula used to compute the relevance
of an item j for a user u, takes into account the neighbors

§
http://downloads.dbpedia.org/2015-10/

ABSTAT IG
dbo:starring dbp:director
dbo:director dbp:starring
dbo:writer dbp:producer
dbo:producer dbp:cinematography
dbo:musicComposer dbp:editing
dbp:music dbp:music
dbo:distributor dbo:writer
dbo:language dbo:musicComposer
dbo:cinematography dcterms:subject
dbo:country dbp:distributor
dbo:editing dbp:studio
dbp:studio dbp:screenplay
dbp:extra dbp:title
dbp:screenplay dbp:country
dbp:genre dbp:language

Table 2: Top 15 features selected by SMZ and IG

of i belonging to the user profile profile(u) and the rating
r(u, j) assigned by the user u.

P (u, i) =

∑
j∈neighbors(i)∩profile(u) sim(i, j) · r(u, j)∑

j∈neighbors(i)∩profile(u) sim(i, j)

The graph-based kernels are used as similarity function -
sim in the previous equation. The set neighbors contains
the k items most similar to i. In this work we fixed k equals
to 20 which is a quite typical value in a recommendation
task [10].

Results. Table 1 shows the results for entity-based and
path-based graph kernel algorithms, respectively. When se-
lecting only the first 5 features, the two feature selection
methods, IG and ABSTAT, show good values of accuracy,
but lower values of aggregate diversity, especially in term
of coverage. This is not really surprising as with a lower
number of features, the system does not have enough diver-
sified information to select more items and the effect of the
popularity bias is stronger. Increasing the number of fea-
tures the value of diversity increases at the expense of the
accuracy. However, a good balance remains between accu-
racy and diversity thus showing a good trade-off between the
two [2]. Table 2 shows the top 15 features selected by AB-
STAT and IG respectively. It is worth noticing that although
there is an overlap between the two lists, this not complete
and that, differently from IG, ABSTAT is able to retrieve
dbp:genre in the top 15 features which carries out mean-
ingful information. Moreover, IG tends to select properties
from the dbp prefix while ABSTAT from dbo (as an example,

see dbp:starring in IG and dbo:starring in ABSTAT). It
is interesting to point out that having a higher number of
features is also a plus if we consider other facilities that can
be exposed by a recommendation engine such as explana-
tion [23]. Given a recommended item, a richer set of fea-
tures allows the computation of a better and more exhaus-
tive explanation on the reason why that particular item has
been recommended to the user. Explanation services are a
gaining momentum also after the so called “right to explana-
tion” introduced by the European Union in its General Data
Protection Regulation¶[6]. In Table 1 we have highlighted
in bold the configurations where ABSTAT outperforms IG
(the * symbol indicates that the differences between AB-
STAT and the IG baseline are statistically significant with
p − value < 0.001 according to the paired t-test.) The im-
plementation of the recommendation algorithm presented in
this work and all the experimental results are available on
GitHub‖.

7. DISCUSSION AND FUTURE WORK
In this work we start our investigation on the role of the
ontological schema available in LD datasets when used for
data- and knowledge-intensive tasks as that of recommen-
dation. In previous works, many approaches and techniques
coming from machine learning have been applied to develop
recommendation engines that exploits LD data but they
never take into the proper account the semantics encoded
in the class hierarchies which plays a fundamental role to
provide a clear and explicit meaning to data. Here, we try
to shed some light in understanding if the ontological infor-
mation encoded into the LD dataset can be summarized and
exploited as a feature selection techniques in recommenda-
tion tasks. For this purpose, we used a schema summariza-
tion tool (ABSTAT) to automatically select a set of features
as input for the recommendation algorithm and compared
it with a classical technique as Information Gain. We then
implemented an item k-NN recommender system which uses
two graph kernels to compute recommendations. We have
seen how ABSTAT outperforms IG, in terms of trade-off be-
tween accuracy and aggregate diversity of results when the
number of selected features grows. As future work we want
to further investigate the role of semantics in feature selec-
tion for recommender systems, evaluating the performance
of the algorithm with different configurations of the graph
kernel (e.g. increasing the length of the paths explored in
the knowledge graph). We are also in the process of evalu-
ating the approach presented here with other datasets such
as Wikidata and LinkedMDB.

8. REFERENCES
[1] G. Adomavicius and Y. Kwon. Improving aggregate

recommendation diversity using ranking-based techniques.
IEEE TKDE, 24(5), May 2012.

[2] P. Castells, N. J. Hurley, and S. Vargas. Novelty and
diversity in recommender systems. In Recommender
Systems Handbook. Springer 2015.

¶
Regulation (EU) 2016/679 on the protection of natural persons

with regard to the processing of personal data and on the free move-

ment of such data, and repealing Directive 95/46/EC (General Data

Protection Regulation) [2016] OJ L119/1
‖
https://github.com/sisinflab/SAC2017

[3] M. de Gemmis, P. Lops, C. Musto, F. Narducci, and
G. Semeraro. Semantics-aware content-based recommender
systems. In Recommender Systems Handbook. 2015.

[4] I. Fernández-Tob́ıas, I. Cantador, M. Kaminskas, and
F. Ricci. A generic semantic-based framework for
cross-domain recommendation. In Proc. of 2nd HetRec
Workshop, 2011.

[5] X. Geng, T.-Y. Liu, T. Qin, and H. Li. Feature selection for
ranking. In Proceedings of the 30th ACM SIGIR, 2007.

[6] B. Goodman and S. Flaxman. European Union regulations
on algorithmic decision-making and a ”right to
explanation”. ArXiv e-prints, June 2016.

[7] T. Gottron, M. Knauf, A. Scherp, and J. Schaible. ELLIS:
interactive exploration of linked data on the level of induced
schema patterns. In Proc. of 2nd SumPre Workshop, 2016.

[8] I. Guyon and A. Elisseeff. An introduction to variable and
feature selection. J. of Machine Learning Research, 3, 2003.

[9] B. Heitmann and C. Hayes. C.: Using linked data to build
open, collaborative recommender systems. In In: AAAI
Spring Symposium: Linked Data Meets Artificial

IntelligenceâĂŹ. (2010, 2010.

[10] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich.
Recommender Systems: An Introduction, 2010.

[11] M. Jarrar and M. Dikaiakos. A Query Formulation
Language for the Data Web. IEEE TKDE, 24(5), 2012.

[12] R. Kohavi and G. H. John. Wrappers for feature subset
selection. Artificial Intelligence, 97(1-2), 1997.

[13] P. Lops, M. De Gemmis, and G. Semeraro. Content-based
recommender systems: State of the art and trends. In
Recommender Systems handbook, 2011.

[14] N. Mihindukulasooriya, M. Poveda-Villalón,
R. Garćıa-Castro, and A. Gómez-Pérez. Loupe - an online
tool for inspecting datasets in the linked data cloud. In
Proc. of ISWC 2015 Posters & Demonstrations Track,
2015.

[15] C. Musto, P. Lops, P. Basile, M. de Gemmis, and
G. Semeraro. Semantics-aware graph-based recommender
systems exploiting linked open data. In Proc. of 24th
UMAP, 2016.

[16] C. Musto, G. Semeraro, P. Lops, and M. de Gemmis.
Combining distributional semantics and entity linking for
context-aware content-based recommendation. In Proc. of
22nd UMAP, 2014.

[17] T. D. Noia, V. C. Ostuni, P. Tomeo, and E. D. Sciascio.
Sprank: Semantic path-based ranking for top-n
recommendations using linked open data. ACM TIST, 8(1),
2016.

[18] V. C. Ostuni, S. Oramas, T. Di Noia, X. Serra, and E. Di
Sciascio. Sound and music recommendation with knowledge
graphs. ACM TIST, 2016.

[19] A. Passant. dbrec — Music Recommendations Using
DBpedia. 2010.

[20] H. Paulheim and J. Fümkranz. Unsupervised generation of
data mining features from linked open data. In Proc. of 2nd
WIMS, 2012.

[21] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver,
and A. Hanjalic. Climf: learning to maximize reciprocal
rank with collaborative less-is-more filtering. In Proc. of
6th ACM RecSys, 2012.

[22] B. Spahiu, R. Porrini, M. Palmonari, A. Rula, and
A. Maurino. ABSTAT: ontology-driven linked data
summaries with pattern minimalization. In Proceedings of
2nd SumPre Workshop, 2016.

[23] N. Tintarev and J. Masthoff. Explaining Recommendations:
Design and Evaluation. 2015.

[24] G. Troullinou, H. Kondylakis, E. Daskalaki, and
D. Plexousakis. RDF Digest: Efficient Summarization of
RDF/S KBs. In Proc. of ESWC, 2015.

