
January 2020

Knowledge-aware Interpretable
Recommender Systems

Vito Walter ANELLI a, Vito BELLINI a , Tommaso DI NOIA aand
Eugenio DI SCIASCIO a

a Politecnico di Bari, Bari, Italy

Abstract. Recommender systems are everywhere, from e-commerce to streaming
platforms. They help users lost in the maze of available information, items and ser-
vices to find their way. Among them, over the years, approaches based on machine
learning techniques have shown particularly good performance for top-N recom-
mendations engines. Unfortunately, they mostly behave as black-boxes and, even
when they embed some form of description about the items to recommend, after
the training phase they move such descriptions in a latent space thus loosing the
actual explicit semantics of recommended items. As a consequence, the system
designers struggle at providing satisfying explanations to the recommendation list
provided to the end user. In this chapter, we describe two approaches to recommen-
dation which make use of the semantics encoded in a knowledge graph to train in-
terpretable models which keep the original semantics of the items description thus
providing a powerful tool to automatically compute explainable results. The two
methods relies on two completely different machine learning algorithms, namely,
factorization machines and autoencoder neural networks. We also show how to
measure the interpretability of the model through the introduction of two metrics:
semantic accuracy and robustness.
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1. Introduction

Nowadays, it is well recognized that model-based approaches to recommendation can
recommend items with a very high level of accuracy. Unfortunately, even when the model
embeds content-based information, if we move to a latent space we miss references to
the actual semantics of recommended items and, consequently, this makes non-trivial the
interpretation of a recommendation process.

On the other side, transparency and interpretability of predictive models are gaining
momentum since they have been identified as a key element in the next generation of rec-
ommendation algorithms. Interpretability may increase user awareness in the decision-
making process and lead to fast (efficiency), conscious and right (effectiveness) deci-
sions. When equipped with interpretability of recommendation results, a system ceases
to be just a black-box [1,2,3] and users are more willing to extensively exploit the predic-
tions [4,5]. Indeed, transparency increases their trust [6] (also exploiting specific seman-
tic structures [7]), and satisfaction in using the system. Among interpretable models for
Recommender Systems (RS), we may distinguish between those based on Content-based
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(CB) approaches and those based on Collaborative filtering (CF) ones. CB algorithms
provide recommendations by exploiting the available content and matching it with a user
profile [8,9]. The use of content features makes easier to develop an interpretable model
even though attention has to be paid since a CB approach “lacks serendipity and requires
extensive manual efforts to match the user interests to content profiles” [10]. On the other
hand, the interpretation of CF results will inevitably reflect the approach adopted by the
algorithm. For instance, an item-based and a user-based recommendation could be in-
terpreted, respectively, as ”other users who have experienced A have experienced B” or
”similar users have experienced B”. Unfortunately, things change when we adopt more
powerful and accurate Deep Learning [11] or model-based algorithms and techniques
for the computation of a recommendation list. Such approaches project items and users
in a new vector space of latent features [12] thus making the final result not directly in-
terpretable. In the last years, many approaches have been proposed that take advantage
of side information in recommendation algorithms to enhance the performance of latent
factor models. Side information can refer to items as well as users [13] and can be either
structured [14,15] or semi-structured [16,17,18]. Interestingly, in [10] the authors argue
about a new generation of knowledge-aware recommendation engines able to exploit in-
formation encoded in knowledge graphs (KG) to produce meaningful recommendations:
“For example, with knowledge graph about movies, actors, and directors, the system can
explain to the user a movie is recommended because he has watched many movies starred
by an actor”.

In this chapter we show how to properly inject semantics-aware data coming from
an RDF knowledge graph1 in model-based recommendation algorithms in order to go
beyond a black-box approach and transform them in interpretable models. In the next
section we will focus on factorization machines [19] while in Section 3 we will analyze
a deep learning model based on autoencoder neural networks [20]. During the evaluation
of the two approaches in terms of precision and interpretability of the final model, we
refer to different dimensions of an RDF dataset. In particular, we know that an RDF
knowledge graph encodes different types of information:

• Factual. This refers to statements that describe attributes of an entity such as Star
Wars: Episode IV – A New Hope was directed by the George Lucas or Jumanji is
located in British Columbia;

• Categorical. It is mainly used to state something about the subject of an entity.
In this direction, the categories of Wikipedia pages are an excellent example.
Categories can be used to cluster entities and are often organized hierarchically
thus making possible to define them in a more generic or specific way;

• Ontological. This is a more restrictive and formal way to classify entities via
a hierarchical structure of classes. Differently from categories, sub-classes and
super-classes are connected through IS-A (transitive) relations.

We will show how the selection of these three classes of knowledge —and their
combinations— may affect the final performance of a knowledge-aware recommender
system.

The chapter is structured as follows: in the next section we introduce and discuss
a model based on knowledge-aware factorization machines for recommender systems

1We mainly refer to DBpedia.
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while in Section 3 we describe a deep learnig model based on autoencoders that embeds
a knowledge-graph in its structure. Section 4 is devoted to a brief description of related
literature. Conclusion and future work close the chapter.

2. Knowledge-aware Hybrid Factorization Machines for Top-N Recommendation

As shown in [21], factorization models have proven their strength in recommendation
scenarios. Main advantages of factorization models are their effectiveness in dealing
with very sparse settings and their prediction accuracy thanks to the subtle modeling of
user-item interactions. Several factorization models have been proposed in the literature
and, among them, factorization machines generalize most of the factorization models
unifying this class of algorithms. Here we report the definition related to a second order
features-interaction factorization model for a recommendation problem involving only
implicit ratings. Nevertheless, the model can be easily extended to a more expressive
representation by taking into account, e.g., demographic and social information [22],
multi-criteria [23], and even relations between contexts [24]. We build for each user
u ∈U and each item i ∈ I a binary vector xui ∈R1×n, with n = |U |+ |I|, representing the
interaction between u and i in the original user-item rating matrix. In this modeling, xui

contains only two 1 values corresponding to u and i while all the other values are set to 0
(see Fig. 1). X ∈ Rn×m is a matrix that contains as rows all the possible xui we can build
starting from the original user-item rating matrix as shown in Fig. 1.

Figure 1. A visual representation of X for sparse real valued vectors xui.

The FM score for each vector x is computed as follows:

ŷ(xui) = w0 +
n

∑
j=1

w j · x j +
n

∑
j=1

n

∑
p= j+1

x j · xp ·
k

∑
f=1

v( j, f ) · v(p, f ) (1)

where the parameters the model learns are: w0 representing the global bias; w j giving the
importance to every single x j; the pair v( j, f ) and v(p, f ) in ∑

k
f=1 v( j, f ) ·v(p, f ) measuring the

strength of the interaction between each pair of variables: x j and xp. The latent factors
number is denoted as k and its value is usually chosen at design time when implementing
the FM.

If we want to make a factorization machine interpretable, we need a way to give an
explicit semantics to latent factors. In this respect, knowledge graphs may result very use-
ful since they provide information about several and different domains [25]. In a knowl-
edge graph, each triple represents the connection σ

ρ−→ ω between two nodes, named
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subject (σ ) and object (ω), through the relation (predicate) ρ . Following [26], we bind
the set of features retrieved from a knowledge graph to the latent factors of a Factoriza-
tion Machine model. Since we are tackling a top-N recommendation problem, we use a
Bayesian Personalized Ranking (BPR) criterion [27] to train our model. In [28], authors
originally proposed to encode a Linked Data knowledge graph within a vector space
model with the aim of developing a CB recommender system. Given I = {i1, i2, . . . , iN}
as the set of items in a catalog and their associated triples 〈i,ρ,ω〉 in a knowledge graph
KG, we build the set of all possible features as F = {〈ρ,ω〉 | 〈i,ρ,ω〉 ∈ KG with i∈ I}. We
can then represent each item as a vector of weights i = [v(i,1), . . . ,v(i,〈ρ,ω〉), . . . ,v(i,|F |)],
where v(i,〈ρ,ω〉) is calculated as the normalized TF-IDF value for 〈ρ,ω〉 as follows:

v(i,〈ρ,ω〉) =
|{〈ρ,ω〉 | 〈i,ρ,ω〉 ∈ KG}|√
∑

〈ρ,ω〉∈F
|{〈ρ,ω〉 | 〈i,ρ,ω〉 ∈ KG}|2︸ ︷︷ ︸

T FKG

· log
|I|

|{ j | 〈 j,ρ,ω〉 ∈ KG and j ∈ I}|︸ ︷︷ ︸
IDFKG

(2)

Since the numerator of T FKG can only take values 0 or 1 and each feature under the
root in the denominator has value 0 or 1, then v(i,〈ρ,ω〉) is zero if 〈ρ,ω〉 6∈ KG.

v(i,〈ρ,ω〉) =
log |I|− log |〈 j,ρ,ω〉∩KG| j ∈ I|√

∑
〈ρ,ω〉∈F

|{〈ρ,ω〉 | 〈i,ρ,ω〉 ∈ KG}|
(3)

Analogously, when we have a set U of users, we may represent them using the fea-
tures that describe the items they enjoyed in the past. In the following, when no confusion
arises, we use f to denote a feature 〈ρ,ω〉 ∈F . Given a user u, if we denote with Iu the set
of the items enjoyed by u, we may introduce the vector u = [v(u,1), . . . ,v(u, f ) . . . ,v(u,|F |)],
where v(u, f ) is:

v(u, f ) =
∑

i∈Iu
v(i, f )

|{i | i ∈ Iu and v(i, f ) 6= 0}|

Given the vectors u j, with j ∈ [1 . . . |U |], and ip, with p ∈ [1 . . . |I|], we build the
matrix V ∈ Rn×|F | (see Fig. 2) where the first |U | rows have a one-to-one mapping with
u j while the last ones correspond to ip. If we go back to Equation (1) we may see that, for
each x, the term ∑

n
j=1 ∑

n
p= j+1 x j · x j′ ·∑k

f=1 v( j, f ) · v(p, f ) is not zero only once, i.e., when
both x j and xp are equal to 1. In the matrix depicted in Fig. 1, this happens when there is
an interaction between a user and an item. Moreover, the summation ∑

k
f=1 v( j, f ) · v(p, f )

represents the dot product between two vectors: v j and vp with a size equal to k. Hence,
v j represents a latent representation of a user, vp that of an item within the same latent
space, and their interaction is evaluated through their dot product. In order to inject the
knowledge coming from KG into a factorization machine, we set k = |F | in Equation (1).
In other words, we impose the number of latent factors equal to the number of features
that describe all the items in the catalog. We want to stress here that our aim is not to



January 2020

Figure 2. Example of real valued feature vectors for different items v j . For lack of space we omitted the
predicate dcterms:subject

represent each feature through a latent vector, but to map each factor with an explicit
feature in order to obtain latent vectors that are made of explicit semantic features. To
this aim, we initialize the parameters v j and vp with their corresponding rows from V
which in turn represent respectively u j and ip. In this way, we try to identify each latent
factor with a corresponding explicit feature. The rationale behind this idea is once the
model has been trained, the resulting matrix V̂ still refers to the original features but it
contains better values for v( j, f ) and v(p, f ) that take into account also the latent interactions
between users, items and features. It is noteworthy that after the training phase u j and ip
(corresponding to v( j, f ) and v(p, f ) in V) contain non-zero values also for features that are
not originally in the description of the user u or of the item i. At this point, if we extract
the items vectors v j from the matrix V̂, we may leverage optimal values of item vectors
to implement an item-kNN recommendation approach. Similarities between each pair
of items i and j are measured by evaluating the cosine similarity of their corresponding
vectors in V̂:

cs(i, j) =
vi ·v j

‖ vi ‖ · ‖ v j ‖

Let Ni be the set of neighbors for the item i which contains the most similar items
to i according to the selected similarity measure. We may choose i such that i 6∈ Iu and a
user u ad then predict the score assigned by u to i as:

score(u, i) =

∑
j∈Ni∩Iu

cs(i, j)

∑
j∈Ni

cs(i, j)
(4)

From now on we will refer to this knowledge-aware factorization machine approach as
kaHFM. Factorization machines can be easily trained to reduce the prediction error by us-
ing different optimization algorithms such as gradient descent methods, alternating least-
squares (ALS) and MCMC. Since we formulated our problem as a top-N recommen-
dation task, following [29], we trained kaHFM by using Bayesian Personalized Ranking
Criterion (BPR) as a learning to rank approach. The BPR criterion is optimized using



January 2020

a stochastic gradient descent algorithm on a set DS of triples (u, i, j), with i ∈ Iu and
j 6∈ Iu, selected through a random sampling from a uniform distribution. At the end of the
training phase, we can use the optimal model parameters for the item recommendation
step.

In Table 1 we show an example for categorical values obtained after the training (in
the column kaHFM) together with the original TF-IDF ones computed for a movie from
the Yahoo! Movies2 dataset.

kaHFM TF-IDF Predicate Object
1.3669 0.2584 dct:subject dbc:Space adventure films
1.1252 0.2730 dct:subject dbc:Films set in the future
0.9133 0.2355 dct:subject dbc:American science fiction action films
0.8485 0.3190 dct:subject dbc:1980s science fiction films
0.6529 0.1549 dct:subject dbc:Paramount Pictures films
0.5989 0.3468 dct:subject dbc:Midlife crisis films
0.5940 0.1797 dct:subject dbc:American sequel films
0.5862 0.2661 dct:subject dbc:Film scores by James Horner
0.5634 0.2502 dct:subject dbc:Films shot in San Francisco
0.5583 0.1999 dct:subject dbc:1980s action thriller films

Table 1. Top-10 features computed by kaHFM for the movie "Star Trek II - The Wrath of Khan".

2.1. Semantic Accuracy and Generative Robustness

kaHFM allows us to keep the meaning of the “latent” factors computed via a factorization
machine, which turns out to be exploitable in order to interpret the recommended results.
We propose an automated offline evaluation procedure to measure the Semantic Accuracy
with the aim of verifying that kaHFM preserves the semantics of the features in V after
the training phase. Furthermore, we define as Robustness the ability to assign a higher
value to important features after one or more feature removal.

Semantic Accuracy. The rationale behind Semantic Accuracy is to evaluate, given an
item i, how well kaHFM is able to correctly predict its original features available in the
computed top-K list vi. In other words, given the set of features of i represented by
F i = { f i

1, . . . , f i
m, . . . f i

M}, with F i ⊆ F , we check if the values in vi, corresponding to
fm,i ∈ F i, are higher than those corresponding to f 6∈ F i. Regarding the feature set M that
initially describes i, we see how many features appear in the set top(vi,M) representing
the top-M features in vi. We then normalize this number by the size of F i and average on
all the items within the catalog I.

Semantic Accuracy (SA@M)=

∑
i∈I

|top(vi,M)∩F i|
|F i|

|I|

It not unusual to deal with scenarios for which we may have |F |�M. Therefore, we
might also consider to measure the accuracy for different sizes of the top list. Since we

2http://research.yahoo.com/Academic_Relations

http://research.yahoo.com/Academic_Relations
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can describe items by using different number of features, the size of the top list might be
a function of the original size of the features set that describes am item. In this direction,
we measured SA@nM with n ∈ {1,2,3,4,5, . . .} and then we evaluated the number of
features in F i which are available in the top-n ·M elements of vi.

SA@nM =

∑
i∈I

|top(vi,n·M)∩F i|
|F i|

|I|

Robustness. Although SA@nM may result very useful to check whether kaHFM assigns
weights according to the original description of item i, we still do not know if a high
value in vi really means that the corresponding feature is important to define i. In other
words, are we sure that kaHFM provides a real mapping between latent factors and explicit
features for i which in turn are the most important to describe the item? To provide a
way of measuring “meaningfulness” for a given feature, we hypothesize that a particular
feature 〈ρ,ω〉 is useful for representing an item i, but the corresponding triple 〈i,ρ,ω〉 is
not described in the knowledge graph. In case kaHFM were effective in generating weights
for unknown features, it should determine the importance of that feature and change its
value to make it join the Top-K features in vi. Following this investigation, the rationale
behind robustness is then to “forget” a triple involving i and check whether kaHFM is able
to generate it back. We performed the following steps in order to implement this process:

• we train kaHFM to obtain optimal values vi for all the features in F i;
• we identify the feature f i

MAX ∈ F i with the highest value in vi;
• we retrain the model initializing f i

MAX = 0 and we compute v′i.
After the above steps, if f i

MAX ∈ top(v′i,M) then we can say that kaHFM shows a high
robustness in identifying important features. In a catalog I, we want define the Ro-
bustness for 1 removed feature @M (1-Rob@M) as the number of items for which
f i
MAX ∈ top(v′i,M) divided by the size of I.

1-Rob@M=

∑
i∈I
|{i | f i

MAX ∈ top(v′i,M)}|

|I|

Similarly to SA@nM, we may define 1-Rob@nM.

Experimental Evaluation. In this section, we provide details for all the three experi-
ments we performed. Particularly, we want to test if:

• kaHFM’s recommendations are accurate;
• kaHFM preserves the semantics of original features;
• kaHFM promotes significant features.

Datasets. We evaluated kaHFM’s performance on two well-known datasets widely
adopted in the recommender systems field on movie domain. Yahoo!Movies (Yahoo!
Webscope dataset ydata-ymovies-user-movie-ratings-content-v1 0)3 contains movies
ratings on a [1..5] scale generated on Yahoo! Movies up to November 2003. It provides

3http://research.yahoo.com/Academic_Relations

http://research.yahoo.com/Academic_Relations
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content, demographic and mappings to MovieLens and EachMovie datasets. Facebook
Movies dataset has been released for the Linked Open Data challenge co-located with
ESWC 20154. It contains implicit feedback only and it provides for each item a mapping
to DBpedia. To map items in Yahoo!Movies and other datasets, we extracted all the up-
dated items-features mappings and we made them publicly available5. Datasets statistics
are shown in Table 2.

Dataset #Users #Items #Transactions #Features Sparsity
Yahoo! Movies 4000 2,626 69,846 988,734 99.34%
Facebook Movies 32143 3,901 689,561 180,573 99.45%

Table 2. Datasets statistics.

Experimental Setting. In order to evaluate the proposed method with respect to other al-
gorithms, we followed the ”All Unrated Items” [30] protocol. We split the datasets using
the Hold-Out 80-20, so we retained for every user the 80% of their ratings in the training
set and moved the remaining 20% in the test set. Furthermore, a temporal split has been
performed [31,32] whenever timestamps associated to every transaction is available.
Extraction. Thanks to the publicly available mappings, we have the DBpedia link for
each of the items in datasets listed in Table 2. Exploiting this mapping, we fetched all
the 〈ρ,ω〉 pairs associated to items. Some features had been excluded, in particular we
excluded features based on the following predicates: owl:sameAs, dbo:thumbnail,
foaf:depiction, prov:wasDerivedFrom, foaf:isPrimaryTopicOf.
Selection. We used three different settings to perform experiments because we want to
analyze the impact of the different kind of features. Features have been chosen depending
on their presence in all the different domains and because of their factual, categorical or
ontological meaning.
Filtering. In this step we remove irrelevant features that bring trascurable value to the
recommendation task, but, at the same time, pose scalability issues. We followed the ap-
proach presented in [26] for the pre-processing phase, and [33] with a unique threshold.
Thresholds (corresponding to tm [26], and p [33] for missing values) and the considered
features for each dataset are represented in Table 3.

Categorical Setting Ontological Setting Factual Setting
Datasets Threshold Total Selected Total Selected Total Selected
Yahoo!Movies 99.62 26155 747 38699 1240 950035 3186
Facebook Movies 99.74 8843 1103 13828 1848 166745 5427

Table 3. Considered features in the different settings

2.2. Accuracy Evaluation

The objective of this evaluation is to verify whether the Linked Data injected in a con-
trolled fashion can positively affect the training of Factorization Machines. To this aim,
we do not compare kaHFM w.r.t. other state-of-art interpretable models but only with al-
gorithms that are more related to our approach. We compared kaHFM6 w.r.t. a canonical 2-

4https://2015.eswc-conferences.org/program/semwebeval.html
5https://github.com/sisinflab/LinkedDatasets/
6https://github.com/sisinflab/HybridFactorizationMachines

https://2015.eswc-conferences.org/program/semwebeval.html
https://github.com/sisinflab/LinkedDatasets/
https://github.com/sisinflab/HybridFactorizationMachines
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degree Factorization Machine where users and items are intended as features of the orig-
inal formulation. We optimized the recommendation list ranking via BPR (BPR-FM). In
order to keep the expressiveness of the model, the same number of hidden factors have
been used (see the ”Selected” column in Table 3). Furthermore, we used items similarity
[34] in the last step of our approach (see Equation (4)), for this reason, we compared
kaHFM against an Attribute Based Item-kNN (ABItem-kNN) algorithm. In ABItem-kNN
each item is represented by a vector of weights which are calculated through a TF-IDF
model. In this model, the attributes are computed via Equation (2). Nevertheless, we also
compared kaHFM against a pure Item-kNN, which is an item-based implementation of
the k-nearest neighbors algorithm. It finds the k-nearest item neighbors based on Pearson
Correlation. Regarding BPR parameters, learning rate, bias regularization, user regu-
larization, positive item regularization, and negative item regularization have been set
respectively to 0.05, 0, 0.0025, 0.0025 and 0.00025. Following [29], we adopted a sam-
pler ”without replacement” in order to sample the triples as suggested by authors. We
also compared kaHFM against the corresponding User-based nearest neighbor scheme,
and Most-Popular, a simple baseline that shows high performance in specific scenarios
[35]. Since our method relies on knowledge-graphs, we considered mandatory a compar-
ison against a pure content-based baselines such as a Vector Space Model (V SM) [28].
As evaluation metrics for our approach, we measured accuracy through Precision@N
(Prec@N) and Normalized Discounted Cumulative Gain (nDCG@N) [36]. The evalua-
tion has been performed considering Top-10 [35] recommendations for all the datasets.
When a rating score was available (Yahoo!Movies), a Threshold-based relevant items
condition [37,38] was adopted with a relevance threshold of 4 over 5 stars in order to take
into account only relevant items. In Fig. 3 results of our experiments regarding accuracy
are showed. In all the tables we highlight in bold the best result while we underline the
second one. Statistically significant results are denoted with a ∗ mark considering Stu-
dent’s paired t-test with a 0.05 level. When Categorical and Ontological information are
used, our method is the most accurate, as evidenced in Yahoo!Movies experiments. Very
interestingly, even though Yahoo!Movies mapping is affected by a strong popularity
bias, only the Factual setting leads our approach to be less effective then ABItem-kNN.
In Facebook Movies we see a very consistent improvement of accuracy as it almost
doubles up the ABItem-kNN algorithm values. We compared kaHFM against ABItem-
kNN to verify whether the collaborative trained features might lead to better similarity
values. We believe that this hypothesis is confirmed since in former experiments kaHFM
beats ABItem-kNN in almost all settings. It turns out that collaborative trained features
achieve better results in terms of accuracy. Moreover, we want to assess if the initializa-
tion of latent factors through a knowledge-graph based approach may improve the per-
formance of Factorization Machines. kaHFM always beats BPR-FM, we suppose that this
happens because the random initialization takes a while to converge towards an optimal
solution. Finally, we want to check if collaborative trained features lead to better results
in terms of accuracy w.r.t. a purely informativeness-based knowledge-graph-aware ver-
sion of Vector Space Model. Our experiments confirm that kaHFM beats V SM in almost
all cases. In order to strengthen the results we got, we computed recommendations with
0,1,5,10,15,30 iterations. In the interest of brevity, we report here7 only the plots for
Categorical setting (Fig. 3) It is worth to mention that for all the cases we considered,

7Results of the full experiments: https://github.com/sisinflab/papers-results/tree/master/
kahfm-results/

https://github.com/sisinflab/papers-results/tree/master/kahfm-results/
https://github.com/sisinflab/papers-results/tree/master/kahfm-results/
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Facebook Yahoo!

Categorical Setting (CS) P@10 P@10 nDCG@10
ABItem-kNN 0.0173∗ 0.0421∗ 0.1174∗

BPR-FM 0.0158∗ 0.0189∗ 0.0344∗

MostPopular 0.0118∗ 0.0154∗ 0.0271∗

ItemKnn 0.0262∗ 0.0203∗ 0.0427∗

UserKnn 0.0168∗ 0.0231∗ 0.0474∗

VSM 0.0185∗ 0.0385∗ 0.1129∗

kaHFM 0.0296 0.0524 0.1399
Ontological Setting (OS) P@10 P@10 nDCG@10
ABItem-kNN 0.0172 0.0427∗ 0.1223∗

BPR-FM 0.0155∗ 0.0199∗ 0.0356∗

MostPopular 0.0118∗ 0.0154∗ 0.0271∗

ItemKnn 0.0263∗ 0.0203∗ 0.0427∗

UserKnn 0.0168∗ 0.0232∗ 0.0474∗

VSM 0.0181∗ 0.0349∗ 0.1083∗

kaHFM 0.0273 0.0521 0.1380
Factual Setting (FS) P@10 P@10 nDCG@10
ABItem-kNN 0.0234 0.0619 0.1764
BPR-FM 0.0157 0.0177 0.0305
MostPopular 0.0123 0.0154 0.0271
ItemKnn 0.0273 0.0203 0.0427
UserKnn 0.0176 0.0232 0.0474
VSM 0.0219 0.0627 0.1725
kaHFM 0.0240 0.0564 0.1434

(a) Yahoo!Movies (b) Facebook Movies

Figure 3. Accuracy results for Facebook Movies, and Yahoo!Movies. In figures: Precision@10 varying #
iterations 0, 1, 5 , 10 , 15, 30

we show the best performance in one of these iterations. Nevertheless, in all the datasets
we can notice a positive influence of the initialization of the feature vectors, with very
similar performances to the ones depicted in [29].

2.3. Semantic Accuracy

Previous experiments showed that kaHFM is effective in terms of accuracy in recommen-
dation scenarios. As a practical matter, we proved that:

• initializing latent factors with content-based weights leads to better performance
with kaHFM;
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• the obtained fine-tuned items vectors are better than the original ones in a top-N
item recommendation scenario;

• results are dependant on the features we extract from the Knowledge Graph.

However, even though the proposed method outperforms the baselines, we still do not
know if the original semantics of the features is preserved in the new space. In Section
2.1 we described Semantics Accuracy (SA@nM) as a metric to automatically assess
if the importance calculated by kaHFM and associated to each feature reflects the actual
meaning of that feature. Thus, we measured SA@nM with n ∈ {1,2,3,4,5} and M = 10,
and evaluated the number of ground features available in the top-nM elements of vi for
each dataset. Regarding the Categorical setting, results are showed in Table 4.

Semantics Accuracy SA@M SA@2M SA@3M SA@4M SA@5M F.A.
Yahoo!Movies 0.847 0.863 0.865 0.868 0.873 12.143
Facebook Movies 0.864 0.883 0.889 0.894 0.899 12.856

Table 4. Semantics Accuracy results for different values of M. F.A. denotes the Feature Average number per
item.

2.4. Generative Robustness

From previous experiments, it follows that features calculated through kaHFM keep their
original semantics if already present in the item description. In section 2.1, we de-
scribed a procedure to measure the capability of kaHFM to compute meaningful features.
Here, we calculate 1-Rob@nM for the two adopted datasets. Results are showed in Ta-
ble 5. In this case, we concentrate on the CS setting which provides the best results in

1-Robustness 1-Rob@M1-Rob@2M1-Rob@3M1-Rob@4M1-Rob@5M F.A.
Yahoo!Movies 0.487 0.645 0.713 0.756 0.793 12.143
Facebook Movies 0.821 0.945 0.970 0.980 0.984 12.856
Table 5. 1-Robustness for different values of M. Column F.A. denotes the Feature Average number per item.

terms of accuracy. To achieve a better understanding of the results, we start focusing on
Yahoo!Movies for which apparently kaHFM has bad performance. In Table 4 we show
that kaHFM was able to guess 10 on 12 different features for Yahoo!Movies. In this ex-
periment, we remove one of the ten features (thus, based on Table 4, kaHFM will guess
an average of 10−1 = 9 features). Since the number of features is 12 we have 3 remain-
ing ”slots”. We want now assess if kaHFM is able to guess the removed feature in these
”slots”. Results of this experiment are showed in Table 5; as we can see, our method is
able to put the removed feature in one of the three slots the 48.7% of the times starting
from 747 overall features.

3. Knowledge-aware Autoencoder

In the last decade, Deep Learning (DL) has gained momentum as a disruptive technol-
ogy. Several successes have largely proved it and, recently, researches have adopted DL
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for tackling the recommendation problem [39]. In this direction, DL recommendation
techniques have shown to outperform state-of-the-art models regarding the accuracy of
recommendations. Among the different DL techniques, Autoencoders are a Deep Neural
Network (DNN) configuration often adopted for rating prediction task in a recommen-
dation scenario. This configuration represents data in a low dimensional space preserv-
ing the important information for the recommendation process. Here, we describe SE-
MAUTO. An Autoencoder configuration that mimics the semantics-aware topology of a
Knowledge Graph (KG). SEMAUTO leverages the knowledge coming from a KG and
combines it with the performance of an Autoencoder.

Autoencoders. Autoencoders are a special configuration of Artificial Neural Nets
(ANNs). It is an unsupervised learning algorithm that aims to replicate the input into
the output layer. It takes advantage of a latent representation of data to reproduce the
fed input. More formally, we can say that Autoencoder training corresponds to learn-
ing an approximate identity function, producing x̂ similar to x. A typical Autoencoder is
graphically represented in Figure 4.

...

... ...
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I2

I3

In

H1

Hn

O1

O2
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Input
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layer
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layer

Figure 4. Architecture of an Autoencoder Neural Network.

Reproducing the input on the output layer, and hence learning an approximation
of the identity function, is intuitive. However, the topology of the network we choose
has many side-effects on the resulting function. As an example, if we limit the number
of neurons in the hidden layer, the resulting function will seek correlations and combi-
nations among input neurons to rebuild it. If we suppose to set 20 neurons in the hid-
den layer, while the input is composed of 100 neurons (i.e., 10× 10 pixel image), the
network can only use those 20 neurons to reconstruct the input. Thus, the network will
learn a compressed representation of the input. A simple autoencoder designed to learn a
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low-dimensional representation is shown in Figure 4. Most Autoencoder configurations
include only a single hidden layer. However, with the spread of DL, we are witnessing
the proposal of many configurations that include several hidden layers. These Deep Au-
toencoders have more capacity and expressiveness, and hence they can perform a better
approximation of the identity function [40].

Unfortunately, despite the excellent performance of Autoencoders, they behave like
black boxes. Since they make use of latent representations, we cannot understand the
reason why a compressed representation gives an output.

Semantics-Aware Autoencoder. The main intuition behind SEMAUTO is reflecting the
KG connections between entities in a neural network. In detail, the same triples that
describe items in the original KG activate the connections from layer i to layer i+1, as
depicted in Figure 5.

In this pictorial representation, we have represented only categorical information
into the autoencoder and we have omitted factual. These two sets of information in DB-
pedia have some peculiarities:

• the amount of categorical information is higher than the factual one. Regarding
movies, the overall number of categories exceeds the number of entities reached
by factual information;

• categorical information is more equally distributed over the items. In particular,
categorical information can connect more items via the same category.

The idea is that a positive vote for Cloud Atlas could be a signal of preference toward
the corresponding category Post-apocalyptic films.

We have leveraged the DBpedia categorical information to define the topology of
the Neural Network. In particular, we have built a separate Autoencoder for each user on
the platform, exploiting the items’ descriptions available in DBpedia. This choice let us
represent users with a different number of neurons, based on their interactions with the
platform.

Let us define n as the number of items rated by user u. Let Ci = {ci1,ci2, . . . ,cim} be
the set of m nodes (representing, e.g., categorical information) associated in the KG to
the item i. Finally, let Fu =

⋃n
i=1 Ci be the set of features mapped into the hidden layer

for the u, with |Fu| being the overall number of units in the hidden layer.
It is worth to notice that the resulting network is not fully connected since it reflects

the connections in the KG. Additionally, bias units are unnecessary, because they have
no equivalent in the KG.

Moreover, the hidden layer units represent the categorical knowledge in KG. Once
we start training the model, we take advantage of backpropagation algorithms to update
the weights minimizing the prediction error for the user-item rating.

A possible interpretation for these weights is the importance given to them by the
user for generating the rating score.

3.1. User profiles

At the end of the training phase, a new user-features latent representation is made avail-
able to the system.

Thanks to the categorical information encoded in the hidden layer, the method learns
to predict user-item ratings employing the semantics of items.
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Figure 5. Architecture of a semantic autoencoder.

In the present work, we have adopted, as an activation function, the well known
sigmoid σ(x) = 1

1+e−x since we have normalized the input to be in the range [0,1]. We
have trained the autoencoders for 10,000 epochs using a learning rate of r = 0.03. The
weights are initialized to random values as suggested by Xavier et al. in [41].

The resulting autoencoders contain much useful user information. In detail, we can
build the user profile extracting the values of the weights. Since each node in the hidden
layer corresponds to an explicit feature, we may assume that those values correspond to
the user-feature importance in the user profile.

For a user u, the importance of a feature c is the summation of the weights wu
k(c)

associated to the edges entering a node in the hidden layer. That unit represents the KG
category c specialized on user u since we have trained the autoencoder with her ratings.
More formally, we have:

ω
u(c) =

|In(c)|

∑
k=1

wu
k(c)

where In(c) is the set of the connections entering the unit that represents the feature
c. We recall that, since the autoencoder is not fully connected, |In(c)| is highly dependant
on the connections between the items and the category c in KG.

Now we can leverage those weights to build a user profile. We model it as a weighted
vector, in which each position is associated with a categorical feature.
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Let Fu be the overall set of categories connected to the items rated by u and let
F =

⋃
u∈U Fu be the overall set of features considering the entire population. For each

user u ∈U and for each feature c ∈ F we have the user profile defined as:

P(u) = {〈c,ω〉 | ω = ω
u(c) if c ∈ Fu}

However, since users have rated a different number of items, we will witness dif-
ferent user profiles’ dimensions. Also, as users rate only a small fraction of the catalog,
the majority of the features for each user remains without a value. To compute those
values we have taken advantage of unsupervised learning motivated by word2vec [42].
word2vec is designed to compute word embeddings exploiting the distribution of words
in sentences of a corpus. It projects semantically similar words to close points in a new
atent space. Even though two words never co-occur in the same sentance, we are still able
to compute their similarity. More formally, let [x1, . . . ,xn] be a word sequence in a win-
dow. word2vec will estimate the probability that a word is the element of the sequence
p(x′ | [x1, . . . ,xn]). In the current setting, instead of sequences of words, we are dealing
with sequences of categories in the user profile. word2vec will, therefore, estimate the
weight for the missing features c′ 6∈ Fu to be part of the sequence. To estimate the scores,
we first need to generate the corpus with all the user profiles P(u). Exploiting ω we can
order the features within the profiles. Second, we need to associate a consistent value for
the ordered elements c ∈ Fu on all u ∈U (with different profiles’ sizes). Formally, we
transform the original set P(u) to a sequence of categories s(u). In detail, we map each
〈c,ω〉 ∈ P(u) to 〈c,norm(ω)〉 using norm as a mapping function:

norm : [0,1] 7→ {0.1,0.2,0.3, . . . ,1}

that linearly maps8 a value in the interval [0,1] to a real value in the set {0.1,0.2,0.3, . . . ,1}.
The new pairs form the set

Pnorm(u) = {〈c,norm(ω)〉 | 〈c,ω〉 ∈ P(u)}

For each normalized user profile set Pnorm(u) we build the corresponding sequence

s(u) = [. . . ,〈ci,norm(ωu
i )〉, . . .〈c j,norm(ωu

j )〉, . . .]

with ωu
i ≥ ωu

j .
The set S = {s(u) | u ∈U} is the corpus we can feed the word2vec algorithm with.

Then, word2vec will be able to discover features patterns following to categories distribu-
tion over all users. We take advantage of user’s sequence of features s(u) to estimate the
probability of 〈c′,norm(ω ′)〉 ∈

⋃
v∈U Pnorm(v)−Pnorm(u) to belong to the context. This

probability is a measure of importance of the category for u. Consequently, we estimate
p(〈c′,norm(ω ′)〉 | s(u)).

It is important to highlight that c′ ∈ Fu can appear in several pairs having c′ as first
category in

⋃
v∈U Pnorm(v)−Pnorm(u). As an example, the category dbc:Kung fu films

may appear in 〈dbc : Kung fu films,0.2〉 and 〈dbc : Kung fu films,0.5〉, along with

8In this work we adopt a standard minmax normalization.
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the related probabilities p(〈dbc : Kung fu films,0.2〉 | s(u)), p(〈dbc : Kung fu films,0.5〉 |
s(u)). In these situations, we choose the category pair with the highest probability since
we require to add the category dbc:Kung fu films and the associated weight only once
in the user profile. After this processing, we obtain a new user profile:

P̂(u) = P(u)∪{〈c,ω〉 | argmax
ω∈{0.1,...,1}

p(〈c,ω〉 | s(u)) and 〈c,ω〉 6∈ Pnorm(u)}

It is worth noticing that this new user profile P̂(u) acknowledges collaborative informa-
tion, while the initial P(u) makes use of only content knowledge. This is since P̂(u) is
built using the set S that represents information coming from all the users.

3.2. Computing Recommendations

The choice of representing user profiles as weighted vectors is particularly useful to
compute recommendations adopting a user-based k Nearest Neighbors (kNN) approach.
As in Vector Space Model, the user profile represents the projection of the user in a new
multi-dimensional space, where the similarity between the users u and v can be easily
computed exploiting Cosine Vector Similarity. Then, the k most similar users (for user
u) are used to estimate the rating r for the item i as a weighted average of the ratings on
i among the neighbors:

r(u, i) =
∑

k
j=1 sim(u,v j) · r(v j, i)

∑
k
j=1 sim(u,v j)

(5)

where r(v j, i) is the rating assigned to i by the user v j. We are now able to provide top-N
recommendations for each user ordering the ratings computed with Equation (5).

3.3. Experiments

We have tested SEMAUTO using three well-known datasets. In detail, the first part of
this section is devoted to introducing these datasets. Later, we introduce the adopted
evaluation protocol along with the evaluation metrics chosen. A detailed discussion of
the experimental results closes the section. For the sake of reproducibility, we have made
available a public implementation of the method9.

Dataset. We have evaluated the performance of the competing methods considering
three well-known datasets belonging to three different domains. The statistics of the
datasets are depicted in Table 6.

#users #items #ratings sparsity

MovieLens 20M 138,493 26,744 20,000,263 99.46%
Amazon Digital Music 478,235 266,414 836,006 99.99%
LibraryThing 7,279 37,232 626,000 99.77%

Table 6. Datasets

9https://github.com/sisinflab/SEMAUTO-2.0

https://github.com/sisinflab/SEMAUTO-2.0
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For MovieLens 20M10 we have considered a mapping containing 22,959 items, for
Amazon Digital Music11 we have mapped 4,077 items, and for LibraryThing12 we have
considered 9,926 items. For these experiments, only the items with a mapping to DBpe-
dia were considered.

Evaluation protocol. As evaluation protocol, we have considered the ”all unrated
items” protocol [43]. In this protocol, all the items but those already rated by user u are
considered candidate items. We have split the original data adopting a Hold-Out 80-20
strategy, in which the 80% of user ratings are retained as a training set. The remaining
20% is considered as the test set. Here, we show how we evaluated the performances of
our methods in recommending items.

As evaluation metrics, we adopted some well-known accuracy and diversity metrics.
As for accuracy, we have measured Precision, Recall, F-1 score, nDCG [44], while for
diversity we have computed Aggregate Diversity, and Gini index as a measure of sales
diversity [45].

Results Discussion. We have compared SEMAUTO against some well-known state-of-
art recommendation algorithms: BPRMF, WRMF and a single-layer autoencoder for rat-
ing prediction. BPRMF [29] is a simple Matrix Factorization algorithm optimized adopt-
ing the Bayesian Personalized Ranking criterion. WRMF [46,47] is a Weighted Regu-
larized Matrix Factorization method that makes use of regularized Least-Squares (LS),
and uses a weighting matrix to differentiate the observed positive feedback from the oth-
ers. BPRMF and WRMF can be enhanced to take advantage of side information, i.e.,
the description of items content. In detail, in this experimental evaluation, we have ex-
tracted the categorical information from the DBpedia KG and used it as side informa-
tion. We have computed BPRMF and WRMF recommendation lists adopting the pub-
licly available MyMediaLite13 implementation. On the other side, the Autoencoder was
implemented by scratch using Keras14. Also, we have performed the Wilcoxon Signed
Rank test to assess the statistical significance of the results. The resulting p-values are
constantly lower than 0.05.
Table 8 shows the results of the competing methods on the three aforementioned datasets.
As you may notice, regarding SEMAUTO, we have considered different values for the
size of the neighborhood k.
Concerning accuracy, it is worth noticing that SEMAUTO outperforms the considered
baselines on MovieLens 20M and Amazon Digital Music. However, on the LibraryThing
dataset, the results show a very similar behavior between the methods, with a slightly
better performance shown by fully connected Autoencoder.
As for diversity, SEMAUTO behaves better than the competing algorithms. In detail, the
results show that the recommendation lists are much more tailored to users, preserving
the accuracy of recommendations. Finally, in the cases in which the accuracy results are
very close to another method, our method provides differentiated lists and a much higher
overall number of items.

10https://grouplens.org/datasets/movielens/20m/
11http://jmcauley.ucsd.edu/data/amazon/
12https://www.librarything.com
13http://mymedialite.net
14https://keras.io

https://grouplens.org/datasets/movielens/20m/
http://jmcauley.ucsd.edu/data/amazon/
https://www.librarything.com
http://mymedialite.net
https://keras.io
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avg #features std avg #features/avg #items

Movielens 20M 1015.87 823.26 8.82
Amazon Digital Music 7.22 9.77 5.17
LibraryThing 206.88 196.64 1.96

Table 7. Summary of hidden units for mapped items only.

Table 7 shows that SEMAUTO performs better in domains with highly described
items. This finding is clear if we observe the number of hidden units. This is likely due
to the high expressiveness of the model, as suggested by the Universal Approximation
Theorem. Consequently, SEMAUTO shows better performance on the MovieLens 20M
dataset than the others. On the other side, on the LibraryThing dataset, SEMAUTO shows
worse performance since we have not sufficient categories to make an expressive enough
model.

4. Related Work

In the past few years, many interpretable recommendation model based on matrix fac-
torization have been proposed. As is well known, matrix factorization approaches are
not easy interprable because the meaning of their latent factors is unknown. One of the
first attempts to address this problem was proposed in [16] in which the authors propose
Explicit Factor Model (EFM). In their work, a matrix factorization framework takes as
input both products’ features and users’ opinions extracted with phrase-level sentiment
analysis from users’ reviews. Thereafter, few improvements to EFM have been proposed
to deal with temporal dynamics [48] and to use tensor factorization [18]. Specifically,
in the latter the aim is to predict both user preferences on features (extracted from tex-
tual reviews) and items; in their work, the authors adopted the Bayesian Personalized
Ranking (BPR) criterion [29]. Advances in MF-based recommendation models which
are interpretable have been proposed lately with Explainable Matrix Factorization (EMF)
[49] in which models rely on neighbors to compute explanations. In the same way, an
interpretable Restricted Boltzmann Machine model has been proposed in [50]. It learns
a network model (with an additional visible layer) that takes into account a degree of ex-
plainability. Finally, an interesting work incorporates sentiments and ratings into a matrix
factorization model, named Sentiment Utility Logistic Model (SULM) [17]. In another
work, recommendations are computed by generating and ranking personalized expla-
nations in the form of explanation chains [51]. Other methods exploits clustering tech-
niques to provide an explanation, for instance in [52] the proposed method provides inter-
pretable recommendations from positive examples based on the detection of co-clusters
between users (clients) and items (products). In [53] authors propose a Multi Level At-
traction Model (MLAM) in which they build two attraction models, for cast and story.
The interpretability of the model is then provided in terms of attractiveness of Sentence
level, Word level, and Cast member. Differently, in [54], authors train a matrix factor-
ization model in order to compute a set of association rules that interprets the obtained
recommendations. In [55], authors prove that given the conversion probabilities for all
actions of customer features, the original historical data is transformable into a new space
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k F1 Prec. Recall nDCG Gini aggrdiv

MOVIELENS 20M

AUTOENCODER − 0.21306 0.21764 0.20868 0.24950 0.01443 1587

BPRMF − 0.14864 0.15315 0.14438 0.17106 0.00375 3263

BPRMF + SI − 0.16838 0.17112 0.16572 0.19500 0.00635 3552

WRMF − 0.19514 0.19806 0.19231 0.22768 0.00454 766

WRMF + SI − 0.19494 0.19782 0.19214 0.22773 0.00450 759

SEMAUTO

5 0.18857 0.18551 0.19173 0.21941 0.01835 5214
10 0.21268 0.21009 0.21533 0.24945 0.01305 3350
20 0.22886 0.22684 0.23092 0.27147 0.01015 2417
40 0.23675 0.23534 0.23818 0.28363 0.00827 1800
50 0.23827 0.23686 0.23970 0.28605 0.00780 1653

100 0.23961 0.23832 0.24090 0.28924 0.00662 1310

AMAZON DIGITAL MUSIC

AUTOENCODER − 0.00060 0.00035 0.00200 0.00102 0.33867 3559
BPRMF − 0.01010 0.00565 0.04765 0.02073 0.00346 539

BPRMF + SI − 0.00738 0.00413 0.03480 0.01624 0.06414 2374

WRMF − 0.02189 0.01236 0.09567 0.05511 0.01061 103

WRMF + SI − 0.02151 0.01216 0.09325 0.05220 0.01168 111

SEMAUTO

5 0.01514 0.00862 0.06233 0.04365 0.03407 3378
10 0.01920 0.01091 0.07994 0.05421 0.05353 3449
20 0.02233 0.01267 0.09385 0.06296 0.08562 3523
40 0.02572 0.01460 0.10805 0.06980 0.14514 3549
50 0.02618 0.01486 0.10974 0.07032 0.17192 3549

100 0.02835 0.01608 0.11964 0.07471 0.24859 3448

LIBRARYTHING

AUTOENCODER − 0.01562 0.01375 0.01808 0.01758 0.07628 2328

BPRMF − 0.01036 0.00954 0.01134 0.01001 0.06764 3140

BPRMF + SI − 0.01065 0.00994 0.01148 0.01041 0.10753 4946
WRMF − 0.01142 0.01071 0.01223 0.01247 0.00864 439

WRMF + SI − 0.01116 0.01030 0.01217 0.01258 0.00868 442

SEMAUTO

5 0.00840 0.00764 0.00931 0.00930 0.13836 4895
10 0.01034 0.00930 0.01163 0.01139 0.07888 3558
20 0.01152 0.01029 0.01310 0.01248 0.04586 2245
40 0.01195 0.01073 0.01347 0.01339 0.02800 1498
50 0.01229 0.01110 0.01378 0.01374 0.02403 1312

100 0.01278 0.01136 0.01461 0.01503 0.01521 873
Table 8. Experimental Results

so that the computation of a set of interpretable recommendation rules allows the model
to provide an explanation. The core of our model is a general Factorization Machines
(FM) model [56]. Nowadays FMs are the most widely used factorization models because
they offer a number of advantages w.r.t. other latent factors models such as SVD++ [57],
PITF [58], FPMC [59]. First and foremost, FMs are designed for a generic prediction
task, on the contrary, others factorization models are usually deployed for specific tasks
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[60]. In addition, it is a linear model and parameters can be estimated accurately even
in presence of high sparsity data. At the same time, several improvements have been
proposed for FMs, such as Neural Factorization Machines [61] that levarage neural net-
works to capture non linear structure of real-world data. Moreover, Attentional Factor-
ization Machines use an attention network to learn the importance of feature interactions
[62]. Finally, FMs have been specialized to better work as Context-Aware recommender
systems [63].

5. Conclusion and Future Work

Recommender systems are, with no doubt, part of our daily life and as such they have
the power to drive our decisions. Based on machine learning techniques, their are getting
more and more complicated from an algorithmic point of view and they act as black-
boxes while computing recommendation list. This calls for a new generation of machine
learning algorithms that can be interpretable by a human user and, whenever possible,
provide human-readable explanations. In this respect, knowledge graphs play a crucial
role in the development of this new breed of tools thanks to the explicit semantics en-
coded in their well curated data. Indeed, they can be injected within a recommender sys-
tem algorithm thus allowing them to provide a semantically-enriched interpretation of
the results they compute. In this chapter we have presented two algorithms fed by DBpe-
dia, kaHFM and SEMAUTO, based on machine learning techniques, namely factorization
machines and autoencoder neural networks, which are able to compute interpretable rec-
ommendation lists. We have shown that, not only they train interpretable models but their
performances are comparable with, and can also beat, state-of-the-art algorithms specifi-
cally designed to implement recommender systems. Moreover, experimental results have
shown an interesting dependency of the performance of an algorithm from the kind of
knowledge injected in the training process. Specifically, we have shown that results may
change in the presence of categorical, factual or ontological knowledge extracted from
a source knowledge graph. The concepts, ideas and motivation behind the development
of kaHFM and SEMAUTO pave the way to the design of new interpretable algorithms
for recommender systems able to automatically generate human-understandable expla-
nations.
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