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Abstract
The tastes of a user can be represented in a nat-
ural way by using qualitative preferences. In
this paper, we explore how ontological knowledge
expressed via existential rules can be combined
with CP-theories to (i) represent qualitative prefer-
ences along with domain knowledge, and (ii) per-
form preference-based answering of conjunctive
queries (CQs). We call these combinations onto-
logical CP-theories (OCP-theories). We define sky-
line and k-rank answers to CQs based on the user’s
preferences encoded in an OCP-theory, and provide
an algorithm for computing them. We also provide
precise complexity (including data tractability) re-
sults for deciding consistency, dominance, and CQ
skyline membership for OCP-theories.

1 Introduction
From its inception, the Web has been centered around the
idea of linking information to make it more accessible and
useful for the users. Its fast growth, however, made it hard
for end users to satisfy their information needs due to the is-
sues related to information overload. Too much information
is currently available on the Web, and new personalized in-
formation filtering techniques are needed that are able to re-
trieve documents/data/resources that best fit users’ interests
and preferences, i.e., that best match users’ profiles.

Moreover, the Web has recently evolved at an increasing
pace towards the so-called Web 3.0, where classical linked
information lives together with ontological knowledge and
social interactions of users. While the former may allow for
more precise and rich results in search and query answering
tasks, the latter can be used to enrich the user profile, and it
paves the way to more sophisticated personalized access to
information. This requires new techniques for ranking search
results, fully exploiting ontological and user-centered data,
i.e., user preferences. Such techniques are also very useful for
computer applications (e.g., preferences over different data
sources) and agents (e.g., planning with preferences).

The study of preferences has been carried out in many dif-
ferent areas, such as philosophy, economics, and choice the-
ory. They can be modeled in both qualitative and quantita-
tive ways, where quantitative preferences are associated with
a number representing their worth, while qualitative prefer-
ences are related to each other via pairwise comparisons.

In this paper, we focus on ranking answers for conjunc-
tive queries (CQs) to Datalog+/– ontologies, based on user
preferences encoded in CP-theories [Wilson, 2004], which
generalize CP-nets [Boutilier et al., 1999]. We chose CP-
theories for their natural, concise, and flexible representation
of qualitative preferences – along with their subclasses, they
are widely used to represent and reason with qualitative pref-
erences. We chose the Datalog+/– ontology language for its
expressive power and intuitive nature – its fragments general-
ize many other ontology languages, such as the DL-Lite fam-
ily [Calvanese et al., 2007] of description logics (DLs) [Calı̀
et al., 2012a]. The integration between the ontology and the
CP-theory is tight: on the one hand, CP-theory outcomes are
constrained by the ontology, and, on the other hand, they di-
rectly inform how answers to CQs are ranked.
The main contributions of this paper are briefly as follows:
• We introduce ontological CP-theories (OCP-theories),
which combine Datalog+/– with CP-theories, modeling pref-
erences over ground atoms in Datalog+/– ontologies.
• We define skyline and k-rank answers for CQs to OCP-
theories. We also provide an algorithm for computing such
answers based on the preferences encoded in an OCP-theory.
•We analyze the computational complexity of deciding con-
sistency, dominance, and CQ skyline membership for OCP-
theories, providing (generic and concrete) precise complexity
results for different types of combined complexity.
•We also provide several tractability results in the data com-
plexity for the case where query answering in the underlying
classical ontology is tractable in the data complexity.

2 Preliminaries
Before introducing OCP-theories, we recall the basics on
Datalog+/– and classical CP-theories.



2.1 Datalog+/–
We now recall the basics of Datalog+/– [Calı̀ et al., 2012a],
namely, relational databases, dependencies, (Boolean) con-
junctive queries ((B)CQs), and ontologies.

General. Consider the following sets: a set ∆ of constants, a
set ∆N of labeled nulls, and a set V of regular variables. A
term t is a constant, null, or variable. An atom has the form
p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn
are terms. Conjunctions of atoms are often identified with the
sets of their atoms. An instance I is a (possibly infinite) set
of atoms p(t), where t is a tuple of constants and nulls. A
database D is a finite instance that contains only constants.
A homomorphism is a substitution h : ∆ ∪∆N ∪ V → ∆ ∪
∆N ∪ V that is the identity on ∆. We assume the reader is
familiar with conjunctive queries (CQs). The answer to a CQ
q over an instance I is denoted q(I). A Boolean CQ (BCQ) q
has a positive answer over I , denoted I |= q, if q(I) 6= ∅.
Dependencies. A tuple-generating dependency (TGD) or ex-
istential rule σ is a first-order formula ∀Xϕ(X)→ ∃Y p(X,
Y), where X ∪Y ⊂ V , ϕ(X) is a conjunction of atoms, and
p(X,Y) is an atom; ϕ(X) is the body of σ, denoted body(σ),
while p(X,Y) is the head of σ, denoted head(σ). For clar-
ity, we consider single-atom-head TGDs; however, our re-
sults can be extended to TGDs with a conjunction of atoms
in the head. An instance I satisfies σ, written I |= σ, if the
following holds: whenever there exists a homomorphism h
such that h(ϕ(X)) ⊆ I , then there exists h′ ⊇ h|X, where
h|X is the restriction of h on X, such that h′(p(X,Y)) ∈ I .
A negative constraint (NC) ν is a first-order formula of the
form ∀Xϕ(X) → ⊥, where X ⊂ V , ϕ(X) is a conjunc-
tion of atoms and is called the body of ν, denoted body(ν),
and ⊥ denotes the truth constant false . An instance I satis-
fies ν, written I |= ν, if there is no homomorphism h such
that h(ϕ(X)) ⊆ I . Given a set Σ of TGDs and NCs, I sat-
isfies Σ, written I |= Σ, if I satisfies each TGD and NC
of Σ. For brevity, we omit the universal quantifiers in front
of TGDs and NCs, and use a comma instead of ∧ to denote
conjunction. As another component, Datalog+/– allows for
special types of equality-generating dependencies (EGDs).
Since they can also be modeled via NCs, we omit them here
and refer to [Calı̀ et al., 2012a] for their details.

Conjunctive Query Answering. Given a database D and a
set Σ of TGDs and NCs, the answers we consider are those
that are true in all models of D and Σ. Formally, the mod-
els of D and Σ, denoted mods(D,Σ), is the set of instances
{I | I ⊇D, I |= Σ}. The answer to a CQ q w.r.t. D and Σ is
the set of tuples ans(q,D,Σ) =

⋂
I∈mods(D,Σ){t | t∈ q(I)}.

The answer to a BCQ q is positive, denoted D ∪ Σ |= q,
if ans(q,D,Σ) 6= ∅. The problem of CQ answering is de-
fined as follows: given a database D, a set Σ of TGDs and
NCs, a CQ q, and a tuple of constants t, decide whether
t ∈ ans(q,D,Σ). Following Vardi’s taxonomy (1982), the
combined complexity of CQ answering is calculated by con-
sidering all the components, i.e., the database, the set of de-
pendencies, and the query, as part of the input. The data
complexity is calculated by only considering the database as
part of the input. The bounded-arity combined complexity

hotel
id city conn class

t1 h1 rome c e
t2 h2 rome w l
t3 h3 rome c e

book
id user price

t4 h1 b 30
t5 h2 b 40
t6 h3 j 35

review
id user feedback

t7 h1 b n
t8 h2 b p
t9 h3 j p

reviewer
user age

t10 b 20
t11 j 30

friend
user user

t12 b a
t13 j a

Figure 1: Database D.

(or ba-combined complexity) is calculated by assuming that
the arity of the underlying schema is bounded by an integer
constant. Notice that in the context of DLs, whenever we
refer to the combined complexity in fact we refer to the ba-
combined complexity, as the arity of the underlying schema
is at most two. The fixed-program combined complexity (or
fp-combined complexity) is calculated by considering the set
of TGDs and NCs as fixed.

Datalog+/– Ontologies. A Datalog+/– ontology O= (D,
Σ), where Σ = ΣT ∪ ΣNC, consists of a finite database D
over ∆, a finite set ΣT of TGDs, and a finite set ΣNC of NCs.
Example 1 A simple Datalog+/– ontology O= (D,Σ) is as
follows: the database D is shown in Fig. 1, modeling the do-
main of an online hotel booking service, integrated with a
social network. The hotel relation contains information about
the hotel, such as its location, if it has WiFi or cable con-
nection, and its class; the review relation is used to register
the users’ feedback after their stay. Intuitively, D encodes,
e.g., that h1, h2, and h3 are three hotels, and p (positive) and
n (negative) represent users’ feedback, w (WiFi) and c (ca-
ble) are available internet connections, and hotels are either
e (economy) or l (luxury) class. In our example, Alice (a) is
planning her holidays and looking for a hotel in Rome. She
is connected to John (j) and Bob (b) in the social network.
Both John and Bob are active users, as they already booked
and reviewed some hotels. The set Σ encodes relationships
among predicates, e.g., that a reviewer always has friends (if
s/he has no friends, then he is not allowed to review).

Σ = {review(I, U, F )→ ∃C,O, S hotel(I, C,O, S),

review(I, U, F )→ ∃A reviewer(U,A),

review(I, U, F )→ ∃P book(I, U, P ),

reviewer(U,A)→ ∃F friend(U,F ),

friend(A,B)→ friend(B,A),

friend(A,A)→ ⊥}.

2.2 CP-Theories
We now recall CP-theories from [Wilson, 2004]. We assume
a finite set of variables X ∈X , each having a finite set of
values x, denoted Dom(X), also called the domain of X . A
value u for U ⊆X associates with every X ∈U a value of X .
The set of all values u for U is denoted Dom(U), also called
the domain of U . We denote with > the only value of U = ∅.
A conditional preference ϕ on X has the form u : x�x′[W ],



where U ⊆X , u∈Dom(U), X ∈X −U , x, x′ ∈Dom(X),
and W ⊆X − (U ∪{X}); intuitively, it means that given
u and t∈Dom(Tϕ), where Tϕ =X − (U ∪{X}∪W ), we
prefer x to x′, irrespective of the value of W . A conditional
preference theory (or CP-theory) on X is a finite set of con-
ditional preferences on X .

An outcome is any value o∈Dom(X ). Interpretations
of CP-theories are strict total orders on Dom(X ), i.e., ir-
reflexive and transitive binary relations π on Dom(X ) that
are total (i.e., for any two distinct o, o′ ∈Dom(X ), ei-
ther (o, o′)∈π or (o′, o)∈π). For conditional preferences
ϕ=u : x�x′[W ], let ϕ? = {(tuxw, tux′w′) | t∈Dom(Tϕ),
w,w′ ∈Dom(W )}. An interpretation π satisfies (or is a
model of) ϕ, denoted π |= ϕ, if π⊇ϕ?. We say π satis-
fies (or is a model of) a CP-theory Γ if it satisfies all ϕ ∈ Γ.
A CP-theory is consistent if it has a model. For two outcomes
o and o′, we say o is dominated by o′ in Γ, denoted o′ � o,
if (o′, o) belongs to all models π of Γ. An outcome o is un-
dominated in Γ if there is no outcome o′ such that o′ � o.
Let Γ? denote the transitive closure of ∪ϕ∈Γϕ

?. Then, for all
outcomes o and o′, it holds that o� o′ iff (o, o′)∈Γ?.

CP-nets [Boutilier et al., 2004] (resp., TCP-nets [Brafman
et al., 2006]) can be represented via conditional preferences
of the form u : x � x′[W ] with W = ∅ (resp., |W |6 1).
Example 2 Alice would like to be online during the holidays
to share pictures and comments, so she always prefers a WiFi
connection to a cable one (statement (1) below), even though
she can live also with the latter. When choosing a hotel, Al-
ice also looks at what her friends already did, and she checks
the feedback that they left on the social network. Her pref-
erence always goes to hotels with a positive feedback irre-
spective of who left the feedback and the hotel’s connection
type (2). Alice knows that Bob is usually very objective in
his opinions so, for positive feedbacks, she prefers Bob’s re-
views to John’s (3). She also knows that Bob cannot live
without being online with his phone, so Bob does not con-
sider a WiFi connection optional. This is why when there is
no WiFi connection, Bob’s feedback is biased and tends to
be negative. Hence, for hotels without WiFi, Alice prefers
John’s review (4). For the same reason, for hotels with WiFi,
she prefers Bob’s feedback to John’s (5).

Based on the above description of Alice’s preferences, we
introduce three variables C (connection), R (reviewer), and F
(feedback) with the domains Dom(C) = {w, c}, Dom(R) =
{b, j}, and Dom(F) = {p, n}, respectively, and we model Al-
ice’s preferences by the CP-theory
Γ = {(1)> : w � c[∅], (2)> : p � n[{C,R}],

(3) p : b � j[∅], (4) cn : j � b[∅], (5) w : b � j[∅]},
which has the following two models:

pwb � pcb � pwj � pcj � nwb � nwj � ncj � ncb,
pwb � pwj � pcb � pcj � nwb � nwj � ncj � ncb.

For example, the outcome o= pwb represents wireless con-
nection and positive feedback from reviewer Bob.

3 OCP-Theories
We now introduce ontological CP-theories (or OCP-theories),
which extend CP-theories by ontologies. They informally de-

fine preferences between conjunctions of atoms relative to an
ontology. W.l.o.g., the set ∆N of nulls is the set of all ground
terms constructed from the set ∆ of constants and a set F of
functions used to skolemize all existential variables in TGDs.
Definition 1 (OCP-Theory) Let O be a Datalog+/– ontol-
ogy O over ∆. Let X be a finite set of variables, each
X ∈X being associated with a predicate p from O, de-
noted pred(X), and as domain Dom(X) with a finite
set of at least two different ground atoms p(c1, . . . , ck),
with c1, . . . , ck ∈∆ ∪ ∆N . Let Dom+(X) be the set of all
(non-ground) atoms p(t1, . . . , tk) with terms t1, . . . , tk over
∆, V , and F . Then, an ontological conditional preference
over X has the form

υ : ξ � ξ′ [W ], (1)

where (i) υ ∈Dom+(U) for some U ⊆X , (ii) ξ, ξ′ ∈
Dom+(X) for some X ∈X −U , and (iii) W ⊆X − (U ∪
{X}). We say υθ : ξθ � ξ′θ [W ], where θ is a substi-
tution, is a ground instance of (1), if υθ∈Dom(U) and
ξθ, ξ′θ ∈ Dom(X). Let Γ be a finite set of preferences of
the form (1). Then, (O,Γ) is an ontological CP-theory (or
OCP-theory).
The following example illustrates OCP-theories.
Example 3 (Hotel Booking cont’d) Consider OCP-theory
(O,Γ) given by ontology O of Example 1 and the following
set Γ of ontological conditional preferences:

Γ = {> : hotel(I, C,w, S) � hotel(I, C, c, S)[∅],
> : review(I, U, p) � review(I, U, n)[{CO,RO}],
review(I, U, p) : reviewer(b, A) � reviewer(j, A′)[∅],
hotel(I, C, c, S) review(I, U, n) :

reviewer(j, A)�reviewer(b, A′)[∅],
hotel(I, C,w, S) : reviewer(b, A)�reviewer(j, A′)[∅]} .

It is defined over the variables CO, RO, and FO with the predi-
cates pred(CO) = hotel, pred(RO) = reviewer, and pred(FO)
= review, and the domains Dom(CO)={hotel(t1), hotel(t2),
hotel(t3)}, Dom(RO)={reviewer(t10), reviewer(t11)}, and
Dom(FO) = {review(t7), review(t8), review(t9)} (see Fig.
1), respectively.

Note that the notion of outcome for OCP-theories is in-
herited from CP-theories (Section 2.2), i.e., a mapping that
associates with every variable X ∈ X a value x ∈ Dom(X).
Observe that every outcome o of an OCP-theory can be seen
as a conjunction of ground atoms over ∆ ∪ ∆N (e.g., in
the above example, the outcome o with o(CO) = hotel(t1),
o(RO) = reviewer(t10), and o(FO) = review(t9) can be seen
as the conjunction hotel(t1) ∧ reviewer(t10) ∧ review(t9)).

As a consequence of the underlying ontology, some of
these outcomes may be inconsistent, and some other out-
comes may be equivalent. We thus have to ensure that
the preference relation encoded in an OCP-theory is well-
defined, which is expressed in the notion of consistency of
an OCP-theory. To define it, we need some preparatory defi-
nitions as follows.

An outcome o of (O,Γ) is consistent if O∪{o(X) |X ∈
X} 6|=⊥. Two outcomes o and o′ of (O,Γ) are equivalent,



denoted o∼ o′, if O∪{o(X) |X ∈X} ≡ O∪{o′(X) |X ∈
X}. An interpretation π for (O,Γ) is a total order over
the outcomes of (O,Γ). We say π satisfies (or is a model
of) O, denoted π |= O, if (i) o and o′ are consistent, for
all (o, o′)∈π, and (ii) (o, o′)∈π for any two equivalent out-
comes o and o′. We say π satisfies (or is a model of) a ground
conditional preference ϕ, denoted π |= ϕ, if πs ⊇ ϕ?, where
πs denotes the strict part of π. We say π satisfies (or is a
model of) a set of conditional preferences Γ, denoted π |= Γ,
if it satisfies all ground instances of ϕ∈Γ. We say π satisfies
(or is a model of) an OCP-theory (O,Γ), denoted π |= (O,Γ),
if it satisfies bothO and Γ. The notion of consistency of OCP-
theories is then defined as the existence of a model.
Definition 2 (Consistency) An OCP-theory (O,Γ) is con-
sistent if it has a model.

We next give an alternative characterization of this notion
of consistency. Given an OCP-theory (O,Γ), let Γ?∼ denote
the transitive closure of the set of all ([a]∼, [b]∼) such that
(i) (a, b)∈Γ? and (ii) a and b are both consistent, where [s]∼
denotes the ∼-equivalence class of s. Then, the consistency
of OCP-theories describes the acyclicity of Γ?∼ .

Theorem 1 OCP-theory (O,Γ) is consistent iff Γ?∼ is acyclic.
The notions of dominance between consistent outcomes

and of undominance of consistent outcomes are as follows.
Definition 3 (Dominance) Let (O,Γ) be a consistent OCP-
theory, and o and o′ be consistent outcomes. Then, o domi-
nates o′ in (O,Γ), denoted o� o′, if (o, o′)∈π for all mod-
els π of (O,Γ). A consistent outcome o is undominated
in (O,Γ), if no consistent outcome o′ exists with o′� o.

The next theorem shows that the notion of dominance be-
tween consistent outcomes is exactly expressed by Γ?∼ .
Theorem 2 Let (O,Γ) be a consistent OCP-theory, and o and
o′ be consistent outcomes. Then, o� o′ iff ([o]∼, [o

′]∼)∈Γ?∼ .

4 CQ Answering for OCP-Theories
In this section, we define skyline and k-rank answers for CQs
to consistent OCP-theories. We also provide an algorithm for
computing their answers.

4.1 Semantics
The following definition formalizes answers for CQs q(X) =
∃Y Φ(X,Y) toO as usual, and relates them to the consistent
outcomes of (O,Γ). Here, we assume a bijection β from a
set Φβ(X,Y)⊆Φ(X,Y) of atoms in q to a set of variables
of (O,Γ) (and so their values in consistent outcomes) such
that every atom a∈Φβ(X,Y) has the same predicate as the
variable β(a). Intuitively, β relates query atoms in q to prefer-
ence atoms in (O,Γ). Note that when β is empty, the answers
for q to O are unrelated to the consistent outcomes of (O,Γ),
i.e., they are (unordered) standard answers to CQs.
Definition 4 (Answer) Let (O,Γ), with O= (D,Σ), be a
consistent OCP-theory, and let q(X) =∃Y Φ(X,Y) be a
CQ. Then, the set of all answers for q to (O,Γ) under the
consistent outcome o of (O,Γ), denoted ans(q,Γ, O, o), is
the set of all tuples a over ∆ ∪ ∆N for which a homomor-
phism µ : X∪Y→∆ ∪ ∆N exists such that (i) D ∪ Σ |=

µ(Φ(X,Y)), (ii) µ(X) =a, and (iii) µ(a) = o(β(a)) for all
a∈Φβ(X,Y). An answer for q to (O,Γ) is an answer for q
to (O,Γ) under some consistent outcome o of (O,Γ).

Note that nulls are included in answers, since they actu-
ally represent prototypical constants. The following example
illustrates the notion of answer for CQs to OCP-theories.
Example 4 Consider the consistent OCP-theory (O,Γ)
of Example 3 and the CQ q(A,B,C,D) =∃Y hotel(A,
rome,C, Y )∧ review(A,B,D). Then, 〈h2, b,w, p〉 is an an-
swer for q under the consistent outcome o = hotel(h2, rome,
w, l) review(h2, b, p) reviewer(b, 20). Let a = hotel(A,
rome,C, Y ) and β(a) = Co; once we fix the outcome o,
then we have that o(β(a)) = hotel(h2, rome,w, l).

We next sort these answers based on the preferences of
the user. We do this via skyline answers [Börzsönyi et al.,
2001], a well-known class of answers for preference-based
formalisms, and the iterated computation of skyline answers
that allows us to assign a rank to every answer (via the CP-
theory); we refer to these as k-rank answers. We first de-
fine skyline answers; note that they are not unique. Indeed,
we may have more than one undominated consistent out-
come o, and also more than one homomorphism µ that sat-
isfies the conditions (i) and (ii) of Definition 4 for the same
undominated consistent outcome o.
Definition 5 (Skyline Answer) Let (O,Γ) be a consistent
OCP-theory, and let q(X) = ∃Y Φ(X,Y) be a CQ. A sky-
line answer for q to (O,Γ) is any tuple a∈ ans(q,Γ, O, o)
for some consistent outcome o such that there is no consis-
tent outcome o′ with (i) o′ � o and (ii) ans(q,Γ, O, o′) 6= ∅.

We next define k-rank answers for CQs to OCP-theories
via iteratively applying the notion of skyline answer. The
definition is technically involved, as answers are obtained by
projecting away existentially quantified arguments, thus dis-
tinct outcomes may be associated with the same answer, and
so distinct levels of the skyline iteration may contain the same
answers. We handle this in each iteration step by removing
all answers computed in previous iteration steps.
Definition 6 (k-Rank Answer) Let (O,Γ) be a consistent
OCP-theory, and q(X) = ∃Y Φ(X,Y) be a CQ. A k-rank
answer for q to (O,Γ) outside a set of ground atoms S is a
sequence 〈a1, . . . ,ak〉 such that either:

(a) a1, . . . ,ak are k different skyline answers for q to (O,Γ)
not belonging to S, if at least k such answers exist; or

(b) (1) a1, . . . ,ai are all i different skyline answers for q
to (O,Γ) that do not belong to S, and (2) 〈ai+1, . . . ,ak〉
is a (k−i)-rank answer for q to (O,Γ−{o}) outside S ∪
{a1, . . . ,ai}, where o is an undominated outcome rela-
tive to �, otherwise.

A k-rank answer for q to (O,Γ) is a k-rank answer for q
to (O,Γ) outside ∅.

Note that when no answer for q to (O,Γ) exists, then 〈〉
is its unique k-rank answer. Informally, a k-rank answer is
a sequence of k answers for a CQ to an OCP-theory ranked
by following the order among consistent outcomes induced
by the OCP-theory. Clearly, as skyline answers are in general
not unique, also k-rank answers are in general not unique.



Input: consistent OCP-theory (O,Γ), CQ q, and k > 0.
Output: a k-rank answer 〈a1, . . . ,ak〉 for q to (O,Γ).

1 Result ← 〈〉; Outcomes ← ∅; Checked ← ∅;
2 k-reached ← false;
3 while k-reached = false do
4 foreach undominated outcome o relative to the partial

order obtained from � by removing all pairs o1� o2
such that o1 ∈Checked do

5 Outcomes ← Outcomes ∪ {o};
6 while k-reached = false and Outcomes 6= ∅ do
7 choose o ∈ Outcomes ;
8 Outcomes ← Outcomes − {o};
9 Checked ← Checked ∪ {o};

10 foreach µ such that µ(X)∈ ans(q,Γ, O, o) do
11 if k-reached = false and µ(X) 6∈ Result then
12 Result ← Result ◦ 〈µ(X)〉;
13 if length(Result ) = k then
14 k-reached ← true;
15 return Result.

ALGORITHM 1: k-Rank-Prefs (O,Γ, Q, k)

4.2 Algorithm
Algorithm 1 computes, given a consistent OCP-theory (O,
Γ), a CQ q, and k> 0 as input, a k-rank answer for q to
(O,Γ). It exploits the preference order of consistent out-
comes to iteratively compute skyline answers for q to (O,Γ).
It stops when it reaches k different answers to q. The most
preferred answers are the ones related to the undominated
consistent outcomes o; thus, the computation starts by adding
such o to Outcomes (line 4). There are two sources of non-
determinism: in line 7, we may choose arbitrarily among dif-
ferent incomparable outcomes; then, in line 10, we may have
multiple equivalent µ’s, and after selecting some of them, we
reach length(Result ) = k. Note that the set of all skyline an-
swers for q to (O,Γ) can be computed by setting k-reached
to true in line 2 and by stopping the algorithm after the set of
all answers associated with all undominated outcomes in Out-
comes are computed, once this set of answers is non-empty.

5 Computational Complexity
We now analyze the computational complexity of deciding
consistency, dominance, and CQ skyline membership for
OCP-theories. We also delineate some tractable special cases.
We assume some familiarity with complexity classes PSPACE
(resp.,P, EXP, 2EXP) containing all decision problems that can
be solved in polynomial space (resp., polynomial, exponen-
tial, double exponential time) on a deterministic Turing ma-
chine; see [Johnson, 1990; Papadimitriou, 1994].

5.1 Decidability Paradigms
The main (syntactic) conditions on TGDs that guarantee the
decidability of CQ answering are guardedness [Calı̀ et al.,
2013], stickiness [Calı̀ et al., 2012b], and acyclicity. Interest-
ingly, each of them has its “weak” counterpart: weak guard-
edness [Calı̀ et al., 2013], weak stickiness [Calı̀ et al., 2012b]
and weak acyclicity [Fagin et al., 2005], respectively.

A TGD σ is guarded if an atom a∈ body(σ) exists that
contains (or “guards”) all the body variables of σ. The class
of guarded TGDs, denoted G, is defined as the family of all
possible sets of guarded TGDs. A key subclass of guarded
TGDs are linear TGDs with just one body atom (which is
automatically a guard), and the corresponding class is de-
noted L. Weakly guarded TGDs extend guarded TGDs by
requiring only “harmful” body variables to appear in the
guard, and the associated class is denoted WG. Notice that
L ⊂ G ⊂WG.

Stickiness is inherently different from guardedness, and its
central property is as follows: variables that appear more than
once in a body (i.e., join variables) are always propagated (or
“stick”) to the inferred atoms. A set of TGDs that enjoys the
above property is called sticky, and the corresponding class
is denoted S. Weak stickiness is a relaxation of stickiness
where only “harmful” variables are taken into account. A set
of TGDs that enjoys weak stickiness is weakly sticky, and the
associated class is denoted WS. Observe that S ⊂WS.

A set Σ of TGDs is acyclic if its predicate graph is acyclic,
and the underlying class is denoted A. In fact, an acyclic set
of TGDs can be seen as nonrecursive. We say Σ is weakly
acyclic if its dependency graph enjoys a certain acyclicity
condition, which guarantees the existence of a finite canonical
model; the associated class is denoted WA. Clearly, A ⊂WA.

Another key fragment of TGDs are full TGDs, i.e., TGDs
without existentially quantified variables, and the correspond-
ing class is denoted F. If we further assume that full TGDs
enjoy linearity, guardedness, stickiness, or acyclicity, then we
obtain the classes LF, GF, SF, and AF, respectively.

5.2 Combined Complexity
For complexity classes C ⊆ PSPACE (resp., deterministic com-
plexity classes C ⊇ EXP), the following theorem shows the
generic results that (i) deciding consistency of OCP-theories
(O,Γ) and (ii) deciding dominance between two outcomes of
OCP-theories (O,Γ) are both complete for PSPACE (resp., C)
when BCQN answering in O is complete for C, and hardness
holds even for ground atomic BCQs. Here, BCQN s denote
BCQs with elements from ∆∪∆N (where ∆N is as defined
in Section 3) and variables as arguments in atoms.
Theorem 3 Let T be a class of OCP-theories (O,Γ) where
BCQN answering in O is complete for a complexity class
C ⊆ PSPACE (resp., deterministic complexity class C ⊇ EXP),
and hardness holds even for ground atomic BCQs. Then, de-
ciding whether (a) some given (O,Γ)∈T is consistent and
(b) o dominates o′ in (O,Γ), given (O,Γ)∈T and two out-
comes o and o′, are both complete for PSPACE (resp., C).

Proof (sketch). (a) For membership, by Theorem 1 it is suf-
ficient to decide whether Γ?∼ is acyclic. This can be done by
deciding whether [o]∼ � [o]∼ for some consistent outcome
o, which can be done (despite the number of outcomes of
(O,Γ) being exponential) by storing at most two outcomes,
while exploring all the paths in Γ?∼. This requires both de-
ciding BCQN s to O (for deciding if an outcome is consistent,
and whether two consistent outcomes are equivalent), which
is in C, and deciding dominance between two outcomes in
a standard CP-theory, which is in PSPACE [Goldsmith et al.,



2008]. Overall, this is possible in PSPACE (resp., C).
Hardness for PSPACE follows from the more specialized

problem of deciding consistency in a standard CP-theory
being PSPACE-hard. Hardness for C holds by a reduction
from the C-hard problem of answering ground atomic BCQs,
since O |=a iff (O∪{a′}, {a′�a}) over X = {X} with
Dom(X) = {a,a′} is inconsistent.
(b) For membership, by Theorem 2 it is sufficient to decide
whether o and o′ are consistent and whether [o]∼� [o′]∼. As
argued in (a), this is overall possible in PSPACE (resp., C).

PSPACE-hardness follows from the PSPACE-hardness of the
more specialized problem of deciding dominance between
two outcomes in standard CP-theories [Goldsmith et al.,
2008]. Hardness for C holds by a reduction from the same
problem as in (a), sinceO |=a′ iff a′′�a holds in (O∪{a′′},
{a′�a}) over X = {X} with Dom(X) = {a,a′,a′′}. �

As a corollary, by the known complexity results for Data-
log+/– (see, e.g., [Lukasiewicz et al., 2015]), deciding consis-
tency and dominance for OCP-theories when the underlying
ontology is in L, LF, AF, G, WG, S, F, GF, SF, WF, or WA, is
complete for the complexity classes shown in Table 1 in the
combined, ba-combined, and fp-combined complexity.
Corollary 4 Given an OCP-theory (O,Γ), where O is de-
fined in L, LF, AF, G, WG, S, F, GF, SF, WS, or WA, decid-
ing whether (a) (O,Γ) is consistent and (b) o dominates o′,
given (O,Γ) and two outcomes o and o′, is both complete
for the complexity classes shown in Table 1 in the combined,
ba-combined, and fp-combined complexity.

We next show that the complexity of deciding whether
a tuple over ∆ is in the skyline answer for a CQ to an
OCP-theory (O,Γ) is complete for PSPACE (resp., C) when
BCQN answering in O is complete for the complexity class
C ⊆ PSPACE (resp., deterministic complexity class C ⊇ EXP).
Theorem 5 Let T be a class of consistent OCP-theories
(O,Γ) where BCQN answering in O is complete for a com-
plexity class C ⊆ PSPACE (resp., deterministic complexity
class C ⊇ EXP). Then, given (O,Γ)∈T , a CQ q, and a tuple
a over ∆ ∪∆N , deciding whether a is in the skyline answer
for q to (O,Γ) is complete for PSPACE (resp., C).
Proof (sketch). For membership, it is sufficient to decide if
a∈ ans(q,Γ, O, o) for some consistent outcome o such that
no consistent outcome o′ exists with (i) o′� o and (ii) ans(q,
Γ, O, o′) 6= ∅. By a similar argument as in the proof of Theo-
rem 3, this is overall possible in PSPACE (resp., C).

Hardness for C follows from the more specialized prob-
lem of BCQN answering being C-hard. Hardness for PSPACE
follows by a reduction from the PSPACE-hard problem of de-
ciding dominance between two outcomes o= o1 . . . on and
o′= o′1 . . . o

′
n in standard CP-theories Γ, as o� o′ in Γ iff

(o1, . . . , on) is in the skyline answer for
⋃n
i=1{qi(Xi)} to

(
⋃n
i=1{qi(oi)}∪

⋃n
i=1{qi(o′i)},Γ′), where Γ′ is obtained

from Γ by consistently replacing values vi by qi(vi). �

By the known complexity results for Datalog+/– (see, e.g.,
[Lukasiewicz et al., 2015]), we obtain as a corollary that de-
ciding CQ skyline membership for OCP-theories when the
underlying ontology is in L, LF, AF, G, WG, S, F, GF, SF,

Language Data Comb. ba-comb. fp-comb.
L, LF, AF in P PSPACE PSPACE PSPACE

G in P 2EXP EXP PSPACE
WG EXP 2EXP EXP EXP

S, F, GF, SF in P EXP PSPACE PSPACE
WS, WA in P 2EXP 2EXP PSPACE

Table 1: Data, combined, ba-combined, and fp-combined
complexity of deciding consistency, dominance, and CQ sky-
line membership for OCP-theories in different languages.

WF, or WA, is complete for the complexity classes in Table 1
in the combined, ba-combined, and fp-combined complexity.

Corollary 6 Given a consistent OCP-theory (O,Γ), where
O is defined in L, LF, AF, G, WG, S, F, GF, SF, WS, or
WA, a CQ, and a tuple a over ∆ ∪ ∆N , deciding if a is in
the skyline answer for q to (O,Γ) is complete for the classes
in Table 1 in the combined, ba-combined, and fp-combined
complexity.

5.3 Data Complexity
We now delineate special cases where deciding consistency,
dominance, and CQ skyline membership for OCP-theories
are all tractable in the data complexity. The following re-
sult shows that deciding consistency and dominance for OCP-
theories (O,Γ), with O= (D, Σ), is data tractable when
BCQN answering in O is data tractable. Here, data complex-
ity means that Σ and the variables and preferences of Γ are
fixed, while D and the domains of Γ are part of the input.

Theorem 7 Let T be a class of OCP-theories (O,Γ) where
BCQN answering in O is possible in polynomial time in the
data complexity. Then, deciding whether (a) some given
(O,Γ) ∈ T is consistent and (b) o dominates o′, given
(O,Γ) ∈ T and outcomes o and o′, are both possible in poly-
nomial time in the data complexity.

Proof (sketch). (a) In the data complexity, the number of all
outcomes of (O,Γ) is polynomial in the number of domain
values. As deciding BCQs in O is possible in data polyno-
mial time, deciding if an outcome is consistent, and whether
two consistent outcomes are equivalent as well. So, comput-
ing Γ?∼ and deciding whether Γ?∼ is acyclic can also be done
in data polynomial time. Overall, by Theorem 1, deciding
consistency of (O,Γ) is possible in data polynomial time.

(b) By Theorem 2, it is sufficient to decide whether o and o′
are consistent and whether [o]∼� [o′]∼. As argued in (a), this
is overall possible in data polynomial time. �

As a corollary, deciding consistency and dominance for
OCP-theories is data tractable when the underlying ontology
is formulated in L, LF, AF, G, S, F, GF, SF, WF, or WA,
which all allow for data tractable BCQN answering.

Corollary 8 Given an OCP-theory (O,Γ), where O is de-
fined in L, LF, AF, G, S, F, GF, SF, WF, or WA, deciding
whether (a) (O,Γ) is consistent and (b) o dominates o′, given
(O,Γ) and outcomes o and o′, are all possible in polynomial
time in the data complexity.



The next result shows that deciding membership to skyline
answers for CQs to consistent OCP-theories is data tractable
when BCQN answering in O is data tractable.

Theorem 9 Let k> 0 be fixed. Let T be a class of consistent
OCP-theories (O,Γ) where BCQN answering in O can be
done in polynomial time in the data complexity. Then, given
(O,Γ)∈T , a CQ q, and a tuple a over ∆ ∪ ∆N , deciding
whether a is in the skyline answer for q to (O,Γ) is possible
in polynomial time in the data complexity.

Proof (sketch). As argued in the proof of Theorem 7, com-
puting Γ?∼ can be done in data polynomial time. Hence, by
Theorem 1, computing iteratively undominated outcomes can
also be done in data polynomial time. Since BCQN answer-
ing in O is data tractable, deciding whether a is in the skyline
answer for q to (O,Γ) is possible in data polynomial time. �

A corollary is that membership to skyline answers for CQs
to consistent OCP-theories is data tractable when the ontol-
ogy is formulated in L, LF, AF, G, S, F, GF, SF, WF, or WA,
which all allow for data tractable BCQN answering.

Corollary 10 Given a consistent OCP-theory (O,Γ), a CQ
q, where O is defined in L, LF, AF, G, S, F, GF, SF, WF, or
WA, and a tuple a over ∆∪∆N , deciding whether a is in the
skyline answer for q to (O,Γ) is possible in polynomial time
in the data complexity.

The above data tractability results do not carry over to WG,
where BCQN answering in O is data complete for EXP, and
data hardness holds even for ground atomic BCQs: so, data
completeness for EXP can be proved similarly to Theorem 5.

6 Related Work
Modeling and dealing with preferences in databases has been
studied for almost three decades, since the seminal work
of Lacroix and Lavency [1987]; see [Stefanidis et al., 2011]
for a survey of notable works in this line. Work has also been
carried out in the intersection with databases and knowledge
representation and reasoning, such as preference logic pro-
grams [Govindarajan et al., 1995], incorporation of prefer-
ences into formalisms such as answer set programs [Brewka,
2007], and answering k-rank queries in ontological lan-
guages [Lukasiewicz et al., 2013].

In the philosophical tradition, preferences are usually ex-
pressed over mutually exclusive “worlds”, such as truth as-
signments to formulas. Bienvenu et al.’s work [2010] is fra-
med in this interpretation of preferences, aiming at bridging
the gap between several formalisms in AI, such as CP-nets
and those studied traditionally in philosophy. In this regard,
CP-nets [Boutilier et al., 2004] are one of the most widely
known formalisms. Most work on CP-nets has focused on
the computation of optimal outcomes and dominance testing,
i.e., to check if one outcome of the CP-net is preferred to an-
other. More recently, Wang et al. [2012] propose an efficient
algorithm and indexing scheme for top-k retrieval in CP-nets.

Recently, there has been some interest in the combination
of Semantic Web technologies with preference representa-
tion and reasoning. A combination of conditional prefer-
ences (very different from CP-theories) with DL reasoning

for ranking objects is presented in [Lukasiewicz and Schell-
hase, 2007]. There, conditional preferences are exploited
in the definition of a ranking function that allows to per-
form a semantic personalized search and ranking over a set
of resources annotated via an ontological description. In
[Lukasiewicz et al., 2013], Datalog+/– is extended with pref-
erence management formalisms closely related to those pre-
viously studied for relational databases. The paper also con-
siders skyline and k-rank queries, but the allowed preference
statements are more general first-order statements, which are
not related to CP-theories. This also comes at the price of
higher complexity and data tractability results that hold only
for disjunctions of atomic queries and not for CQs like here.

Closest in spirit to this paper is perhaps the preference for-
malism that combines CP-nets and DLs in [Di Noia et al.,
2013], where variable values of CP-nets are satisfiable DL
formulas. The main difference with this paper lies in the use
of CP-theories here rather than CP-nets, and (more impor-
tantly) in the relationship between the ontology and the CP-
net/theory. While Di Noia et al. [2013] use ontological ax-
ioms to restrict CP-net outcomes, here we use the preference
information contained in a CP-theory to inform how answers
to queries over the ontology should be ranked. Finally, in the
context of information retrieval, in [Boubekeur et al., 2007]
Wordnet is used to add semantics to CP-net variables. An-
other interesting approach to mixing qualitative preferences
with Semantic Web technology is presented in [Siberski et
al., 2006], where an extension of SPARQL is studied that can
encode user preferences in the query. Santhanam et al. [2010]
reduce dominance testing in CP-nets to reachability analysis
in a graph of outcomes. Mindolin and Chomicki [2011] ex-
plore the p-skyline framework, which extends skylines with
the notion of attribute importance in preference relations.

7 Summary and Outlook

We have introduced ontological CP-theories (OCP-theories),
which are a novel combination of Datalog+/– ontologies with
CP-theories. We have defined skyline and k-rank answers for
CQs to OCP-theories. We have also provided an algorithm
for computing such skyline and k-rank answers. Further-
more, we have provided a host of precise complexity (includ-
ing several data tractability) results for deciding consistency,
dominance, and CQ skyline membership for OCP-theories.

Interesting topics of ongoing and future research include
the implementation and experimental evaluation of the pre-
sented approach, as well as the investigation and development
of optimized special-case and/or approximation algorithms,
and the exploration of further tractable cases of OCP-theories.
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