
IET Software

Research Article

Architecting the Web of Things for the fog
computing era

ISSN 1751-8806
Received on 5th December 2017
Revised 7th March 2018
Accepted on 29th March 2018
doi: 10.1049/iet-sen.2017.0350
www.ietdl.org

Niko Mäkitalo1 , Francesco Nocera2, Marina Mongiello2, Stefano Bistarelli3
1Department of Computer Science, University of Helsinki, Gustaf Hällströmin Katu 2b, 00014 Helsinki, Finland
2Department of Electrical & Information Engineering (DEI), Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy
3Department of Mathematics and Computer Science, University of Perugia, Via Vanvitelli 1, 06123 Perugia, Italy

 E-mail: niko.makitalo@helsinki.fi

Abstract: Fog computing paradigm is emerging after a decade's dominance of cloud-based system design and architecture.
Now, instead of centralising the computation and coordination to remote services, these are deployed and distributed to all over
physical surroundings and network nodes, including cloud services, smart gateways, and network edge devices. At the moment,
the majority of the Internet of things (IoT) systems and software has built on top of open Web-based technologies. The authors
assume that with the ever-growing number and heterogeneity of connected devices, it becomes ever-more crucial to have open
standards that support interoperability and enable interactions. They review the current technological space for architecting Web
technology-based IoT software in the coming era of fog computing. They focus on fundamental research challenges and
discuss the emerging issues.

1 Introduction
The software has become an essential part of every aspect of the
society and our daily life. This is indicated by many recent trends
in our society – smart homes, smart traffic, smart cities,
(autonomous) robots, autonomous connected vehicles and so on –
all contain an ever-increasing amount of software. These trends
also indicate that the single device computing era is coming to an
end. However, the development and software architectures have
not changed much during past ten years: At the moment, cloud-
based services are the de facto way how the software is
constructed, and then provided for the end users in the form of Web
and native apps. This approach, however, cannot accommodate all
the needs that come with the multi-device era where programmable
objects are everywhere and require efficient and real-time
coordination and distributed computations. This has led to a
situation where computation and coordination require new types of
software architectures and programming models.

Internet of things (IoT) has been one key research topics in
computer science for some time. IoT has no single definition, and
hence it is often referred as an approach for connecting all the
physical things to the Internet, or, as an extension to mobile
computing. Thus, IoT can be seen to have multiple research
subfields, like the Internet of Industrial Things, the Internet of
Vehicles, or the Internet of People. Web of Things (WoT) is one of
these subfields and a general term used for describing all the
approaches to connecting physical things to the World Wide Web
[1–4]. In the coming years, people use more and more various
types of Web-enabled client devices, and data is stored
simultaneously on numerous devices and cloud-based services.
Hence, it is the devices together with people and services which
form the modern computing environment. The expectations
towards interoperability will dramatically raise, which will imply
significant changes for software architecture as well since the
development is evolving from traditional client–server
architectures to decentralised architectures. Thus, cloud computing
is complemented with two new computing paradigms: edge
computing (computation solely on the device-end) and fog
computing (computation everywhere on the network level).

Fog computing is an emerging paradigm that was presented by
Cisco in 2012. It promises to be an evolution of cloud-based
systems and is primarily targeted for the IoT [5]. While edge
computing is solely about computations on the network edge

devices, the goal of fog computing is to enable exploiting
computation and data resources across cloud services, edge
devices, as well as intelligent network nodes. If today the cloud is
the most used abstraction and environment to handle remote
applications, the fog then offers the advantage of better supporting
new computer applications in our connected world. For example,
autonomous driving cars, remote monitoring systems for patients,
drones for home delivery, the adaptive lighting of streets and
homes can all benefit from fog computing. All this by leveraging
the pervasive computing infrastructure that consists of ad hoc
processors, smart routers, and personal devices such as
smartphones for computations. This approach allows reducing
bandwidth consumption in IoT environments, exploiting a
distributed structure that is quite similar to that used in peer-to-peer
communications. In some cases, the fog can also be seen as a
parallel network to the public since it can allow access to resources
and computing power without passing through a public Internet
connection [6].

Open standards and Web technologies provide tools and a
platform for implementing applications in more vendor-neutral
ways – in contrast to native apps that can run only on one platform.
However, even though the communication is built-in to the Web,
the interactions still happen in the same way as with native apps.
Also, the Web browser essentially is an app itself and only offers a
sandbox for interacting with other entities. Thus, pure Web
technology-based software partly suffers from the same, and even
more limitations than native software do suffer. Despite these
limitations, however, Web technologies can still have advantages
over native apps [7], and be used for enabling co-operation and
interactions between the devices and users. Moreover, Web
technologies can teach a lot about standardisation for enabling
vendor-neutral interactions for the required architectures. For this
reason, the objective of this article is to study the future research
avenues for architecting WoT software, and especially on the fog
computing era. The open standards and Web technology-based
standards will then play a key role in future to enable free
communication, interoperability, and interactions between the
entities in the fog.

This article is structured as follows: In Section 2, we describe
the key enabling technologies (KET) for building WoT software at
the moment and in the near future. In Section 3, we outline some
motivation and research questions for the WoT research. Section 4
introduces some research themes that are focused on WoT system

IET Softw.
© The Institution of Engineering and Technology 2018

1



and software research. In Section 5, we discuss how the current
technologies and approaches can respond to the research questions.
We also discuss about the possible threats to the validity of our
research. Finally, Section 6 draws some conclusions.

2 Design space: towards fog computing
WoT system architecture at the moment typically builds on a
cloud-based, centralised approach where the physical objects are
connected to an Internet service, sending data there and possibly
getting some actuation instructions back. (We have illustrated this
kind of abstract-level example of traditional WoT architecture in
Fig. 1.) It has been discussed, however, that the network is
becoming the bottleneck in cloud computing [8], and relying on
such solutions may not be fast enough for the increasing number of
mission-critical applications that employ the physical objects [6]. 

Due to the fast development of ICT technology smaller and
more powerful chips have become cheap and can now be
embedded to everywhere. In addition to the everyday physical
objects to become programmable, this also drives the network to
become more and more programmable with the smarter routers and
eventually with 5G technologies. The following describes how
some key technologies foster the transfer from moving from
centralised cloud-based WoT solutions towards WoT that operate
everywhere on the network. In Fig. 2, we present an illustration of
an abstract WoT architecture for the Fog where the computation
and coordination are distributed and can take place dynamically on
various nodes. 

2.1 Dynamic and decentralised computation and
coordination infrastructures

While the traditional WoT applications appear to run in the
browser, the actual computation and coordination have typically
taken place on a centralised service. The top-right corner in Fig. 3
represents these traditional approaches. One key idea of fog
computing is to exploit the benefits the modern, dynamic
computing environment offers. With non-Web-based approaches,
this goal becomes challenging, however. Fortunately, Web
technologies foster for the leveraging of the edge, fog, and cloud,
since these technologies typically work everywhere, and hence
support harnessing the heterogeneous computational resources. In
other words, it is possible (or it is becoming possible) to partition
and modularise the software since the Web-based (typically
JavaScript) components can be moved and executed on the servers,
edge devices as well as on many intelligent computation nodes in
between the edge and cloud. This further fosters the emergence of
the fog computing, as depicted in bottom-right in Fig. 3. 

In practice, however, the distinction between fog and edge is
not always clear since the mobile devices today offer excellent
support for personal area networks, namely with Bluetooth. With
these, and other network gateways becoming increasingly smart
and programmable, this allows bringing the intelligence to the
network level. The processing of the data can be taken care by a
smart gateway or by a mobile device has many benefits over the
cloud-based computation and coordination. For instance,
coordination at the network edges help to reduce the
communication lag and allows device coordination in situations
when there is no Internet connection, or the quality of the
connection is terrible. The more local coordination can also support
functional safety since if one device fails to perform some
operation, other devices are there to replace it.

2.1.1 Container technology: One of the challenges while moving
from monolith architecture towards more distributed and
decentralised microservice architecture is the management and
deployment of the software constructs. This challenge is typically
responded with container technology, with its (almost de facto)
implementation Docker. Its primary objective is to make the
microservices easily portable and configurable, and enable them
running in isolation from the host computer.

Docker technology is not tied to any other specific
programming language or implementation technology, which from
the WoT perspective becomes very useful. In contrast, in a
monolith architecture, it is often challenging mix other services and
libraries implemented with other technologies and programming
languages than the remainder of the system. The container-based
services communicate with messages, and each service is
independent implementation. This allows freely mixing various
technologies and improves the interoperability of the different
systems.

2.1.2 Serverless computing: Another alternative for the
traditional server-based software is serverless computing, which
the central idea is to free the software developer from maintaining
a server. Instead, the developer implements functions that are
deployed and executed on a cloud service, and the costs of using
this service are based on pay-per-execution. Presently, the most
used and well-known examples of the serverless computing include
AWS Lambda, Google Cloud Functions, and Azure Functions, but
others are continually emerging. As the number of serverless
computing service providers increases, it may become challenging
to decide which provider to use. Fortunately, the open source
Serverless Framework (https://serverless.com) helps in the task by
providing a homogenised interface to take benefit of these services.

From WoT development perspective, the serverless computing
approaches give a solution for decentralising the computation
easily. Think for example if a physical object has the insufficient
computing power, it could then invoke a method remotely.
Similarly, some computations can be offloaded from the browser
and performed remotely.

Fig. 1  Generic cloud-based WoT system architecture
 

Fig. 2  Web technologies support leveraging the full potential of the fog
 

2 IET Softw.
© The Institution of Engineering and Technology 2018



2.1.3 From cloud services to the edge devices: From WoT
perspective, the development is often fostered by the emerging
APIs of modern browsers since these enable more sophisticated
architectures. The browser APIs may, for example, allow
connecting the devices directly to the browser. Such connectivity
further supports tasks required for coordinating the physical objects
and performing computations close to the data sources [9].

From WoT point of view, it is also fortunate that now
approaches allowing dynamic computations have emerged. For
instance, Apple provides JavaScriptCore framework for iOS,
macOS, tvOS (https://developer.apple.com/documentation/
javascriptcore) or Android LiquidCore framework (https://
github.com/LiquidPlayer/LiquidCore) allow the computation and
coordination to be performed by some of the edge devices [10].

Moreover, although most of the serverless computing
approaches (discussed above) are yet targeted to run in the cloud,
some evidence exists that the cloud providers have realised the
potential of the edge devices, and now offer their solutions for fog
computing: Amazon's Greengrass software (https://
aws.amazon.com/greengrass/) allows running AWS Lambda
functions on the users’ devices. It appears that the computation and
coordination are again coming closer to network edges and
prevents dispatching loads of useless sensor data to the cloud
which eats up bandwidth and can be costly.

2.2 Connectivity and communication

Connectivity technologies can roughly be categorised into two
groups: technologies that require infrastructure's support for
communication, and technologies which do not require a separate
intermediary technology. These both have pros and cons, as we
discuss next.

2.2.1 Infrastructure-based communication: By communication
requiring intermediary technology for enabling relaying the
messages between the communicating entities, we refer to
infrastructure-based communication. The concrete infrastructure
typically is either wireless or wired local area network (W/LAN),
or wide area network (WAN), which is more or less a synonym for
the Internet. Currently, the Internet-based communication is yet the
most typical way to implement the communication for a WoT
system, and the protocol used for the task is often hypertext
transfer protocol (HTTP). In many cases, the WoT system
architecture follows representational state transfer (REST) design
principles [11] (although this indeed is not tied to the used
communication). Other much-used protocols at the moment are
message queuing telemetry transport (MQTT) and constrained
application protocol (CoAP) which both enable lightweight
communication for more constrained devices and more direct
messaging between the entities. Especially MQTT (in addition to
REST) at the moment has gained particular popularity for the
Internet of Things systems. However, using MQTT or CoAP
requires a broker for relaying the messages. Moreover, although
HTTP protocol may not be the best fit anymore, in the recent 2.0
version (HTTP/2) offers support for two-way communication [12].
The downside yet is that one entity acts as the server and the others
as clients, which initialise the connection.

2.2.2 Device-to-device communication: In the fog computing,
there is a growing demand for more direct communication
technologies with support for bi-directional communication
between the entities. The distinction between edge and fog
computing is often not very clear [13], since the modern mobile
devices offer excellent connectivity, and thus act as gateways for
many peripheral devices. At the moment, for example, personal
and body area networks (BANs) are formed mainly with Bluetooth

Fig. 3  Illustration of open Web technology-based computation and coordination in the fog
 

IET Softw.
© The Institution of Engineering and Technology 2018

3



and Bluetooth low-energy (Smart) technologies between the things
and the mobile phone. In general, smart gateway technology uses
ZigBee or Z-Wave to communicate with the smart home
electronics, and these gateways are then typically connected LAN
and sometimes to WAN for external access. Another device-to-
device connectivity technology is WiFi direct, which allows using
the existing WiFi technology to form connections between the
supported devices. In practice, WiFi direct means that one of the
devices says a mobile phone, forms a group and acts as its leader,
and other devices then connect to this established group.

3 Motivation
The objective of this article is to study the future research avenues
for architecting WoT software, and especially on the fog computing
era. Our primary research question is:

What are the present and future WoT research themes?
We set the scope of our study and answer the primary research

question with four supportive and more focused research questions.
While these research questions are targeted to WoT research, they
are at least partially intertwined with the IoT research. Thus, while
discussing them, we also refer the two interchangeably. The
primary research question is:

• RQ1: How to use data and hardware resources for perception
and interaction?

• RQ2: What are the current building blocks for WoT, and who is
providing them?

• RQ3: Is interoperability with other systems supported, and how
can this aspect be improved?

• RQ4: What are the current security and privacy issues, and can
these threats be covered?

In the remainder of this article, we use these research questions
for discussing the current state of the WoT research, as well as
outlining some future research ideas. To answer the primary
research question, we start by outlining some of the current
research themes in the next section. Then, we continue towards a
comprehensive discussion on the other research questions (RQ1–
RQ4).

4 Research themes for WoT
WoT has been studied extensively since 2011 [3, 4]. Since WoT is
an umbrella term for multi-device IoT systems that implemented
with Web technologies, many research areas are closely related.
Here we outline some of the areas that we find to be the most
important ones in future research.

4.1 Liquid user experience

Liquid software refers to the approaches in which applications and
data can seamlessly flow from one device to another, allowing the
users to roam freely across all the computing devices that they have
[14]. The goal is that users of liquid software do not need to worry
about data copying, manual synchronisation of device settings,
application installation, or other burdensome device management
tasks. Instead, things should work with minimal effort. From the
software development perspective, liquid software should
dynamically adapt to the almost infinite set of devices that are
available to run it.

From the usability of WoT perspective, liquid software research
studies important paradigm: How the applications can roam from
one device to another, following the user from everywhere. The
studies aspects include for example state management and
synchronisation, and various types of user interfaces [14]. While
this paradigm is barely about beginning to work with full-fledged
computing devices there is much research to be carried out in the
context of constrained devices. (The most advanced is Apple's
Continuity (http://www.apple.com/macos/continuity/).

4.2 Complex event processing

Complex event processing (CEP) refers to real-time analysis and
filtering of large amounts of data as explained by Boubeta-Puig et
al. [15]. The aim is at detecting meaningful events to be used either
directly by the end users, or more commonly, by other systems.
According to Boubeta-Puig et al., so-called event patterns are used
for this task, which are conditions to be met for detecting the
interesting situations. The data streams leveraged for the
processing can, for example, come from logistics, communication
networks, social networks, health and wellness services and so on.
Many example CEP systems can be found in [16]. Many issues yet
must be solved to make CEP applicable to commercial systems.
These issues include for example fault tolerance and scalability
aspects [17, 18]. Also, query languages should be studied since
these could help utilising the processed events [19]. Despite of
these, many new data management and optimisation techniques for
processing data has emerged [20–23].

In the context of WoT and fog computing, complex events and
processing them becomes increasingly important as this has
genuinely potential to augment people in their lives. Using Web
technologies bring both, opportunities and challenges. The
opportunities include that the data can be processed – or pre-
processed – closer its origin, say on an intelligent network node for
instance. However, such support is limited, which brings us to the
challenges. While JavaScript adoption has been vast, there yet is
plenty of research to be carried on this area to process the data
anywhere in the Fog efficiently: Presently, JavaScript's primary
function is to enable data visualisations instead of the actual
processing (e.g. with the popular D3.js library).

4.3 Microservice architectural style

The microservices architecture emphasises dividing the system into
small and lightweight services. Whether considering microservices
as a new architectural style; as an implementation of service-
oriented architecture (SOA) [24, 25]; or as an evolution of the
traditional SOA style [26], the approach is one of the most recent
avenues towards more flexible installations and executions. The
motivation for this transition comes from the fact that continually
maintaining a complex monolithic architecture has resulted in
difficulties in keeping up in pace with new development
approaches such as DevOps, calling for deployment several times a
day.

In [27], microservice architecture is defined as a distributed
application where all modules are microservices. The
microservices that can be implemented, tested and executed
individually, help to manage the development. Some other benefits
include increased agility and developer productivity, and also
scalability, reliability, and maintainability of the whole system.
However, the benefits come with challenges. For instance,
discovering services over the network is often challenging and may
introduce new weak point to the system. Also, security and privacy
management often come more challenging when the architecture is
highly decentralised. Other challenges include optimising
communication and performance. So finally, benchmarking and
testing the system as a whole may become challenging as well.
Despite the many challenges, the system can often benefit from the
most advantages [28, 29].

From WoT research perspective, this transition at the moment
affects to the backend of the system. However, as has been
discussed, the physical objects in our surroundings are becoming
more and more capable of performing computations. Thus, some of
the physical objects may then run some microservices. The benefit
is that deployments can be automated and made continuous. From
the perspective of fog computing, the benefit of microservices is
that the data can stay close to its source, and as a result, the lag in
the communication reduces. Moreover, the privacy of the users
may improve if all the data does not need to be transferred over to
a service provided by an Internet company that benefits from the
user-produced data.

4 IET Softw.
© The Institution of Engineering and Technology 2018



5 Discussion
In this section, we continue the discussion on the remaining four
research questions (RQ1–RQ4). In the end of this section, we
discuss about threats to the validity of our study.

5.1 RQ1: How to use data and hardware resources for
perception and interaction?

Physical devices (ever-more often constrained and embedded
devices) are producing vast amounts of data with their sensing
capabilities. Presently, this data is typically dispatched further
without processing its raw form. In future, this data can be
expected to act as one of the critical enablers for many WoT
scenarios, for instance helping people as well as other devices to
make more well-informed decisions [30]. However, the raw data
itself does not support making these decisions, and there are mainly
four reasons for this [31]: First, the data is distributed to various
locations and must be acquired someway. Second, the amount of
data is very large (much steeper any human could ever interpret).
Third, the data is often noisy and contains false values. Fourth, the
data in its raw form (e.g. temperature values) is not very useful, but
instead must be processed to more abstract-level information (e.g.
weather conditions). Hence, to leverage this data we need new
tools for collecting, processing, analysing, describing, and then,
finally, for using it in the decision-making processes [30].

The hardware resources can be used for interacting and giving
‘the output’ to the physical world. In essence, this means sending
some actuation instructions over the network. While now the
network is typically the Internet, in fog computing context
heterogeneous networks play the ever-more important role, giving
specific benefits like reduced dependency on high-quality
connection, shorter communication lag, and some fault tolerance.
Like utilising the data, also the actuation requires abstractions: For
example, commanding each servo motor with an appropriate
amount of power would not work. In the context of WoT, the most
famous approaches come from Guinard and Trifa in their many
publications and books [32].

In essence, there are two kinds of programming models for the
fog computing: sense-process-actuate models, and stream
processing models [6]. Of these two, the stream processing model
has been the typical one and has previously been used in many IoT
and cloud computing approaches. In the fog computing context, the
stream processing is still a popular model as it is more straight-
forward to implement. The complex event processing (CEP)
approaches often belong to this category, although the processing
typically takes places on the edge devices [20–23]. The sense-
process-actuate model, on the other hand, often requires more high-
level abstractions when used with heterogeneous devices. Until
now there only have been few such models in the context of fog
computing [13], and especially in the context WoT and fog
computing. For this reason, many have simply used APIs for the
task, which makes the programming less effective and affects to
the maintainability aspect as well.

We believe that higher abstraction models will start to emerge
sooner than later, which is indicated by the recent developments in
fog computing. Mahmud et al. for example discuss challenges
regarding structural, service and security-related issues [33]. Also,
a taxonomy of fog computing classifies and analyses the existing
works based on their approaches towards addressing the
challenges, proposing some promising research directions to
pursue in the future. Also, Wen et al. provide an overview of the
core issues, challenges and future research directions in fog-
enabled orchestration for IoT services in [34]. Additionally, they
also present experiences of an orchestration scenario as a workflow
across all layers of fog architecture. The reported experiences are
based on their own fog orchestrator.

The work by Byers [35] discusses some of the more significant
architectural requirements for the critical IoT networks in the
context of exemplary use cases, and how fog computing techniques
can help fulfil them. A wide variety of potential IoT use cases,
serving many critical vertical market switch several selected use
cases in each market that have requirements to which fog
techniques are potentially applicable, such as agriculture, health,

transportation, smart cities/smart buildings and so on. The work
provides useful guidelines to make more informed decisions in the
architecture, partitioning, design, and deployment of fog
computing in IoT networks.

In [36], Rahmani et al. present a fog-assisted system
architecture capable of coping with many challenges in ubiquitous
healthcare systems such as mobility, energy efficiency, scalability,
and reliability issues. According to the Rahmani et al., successful
implementation of smart e-health gateways can enable massive
deployment of ubiquitous health monitoring systems, especially in
clinical environments. The work presents a prototype of a smart e-
health gateway called UT-GATE and implements an IoT-based
early warning score health monitoring to practically show the
efficiency and relevance of the system on addressing a medical
case study.

An example from some of the authors of this paper for building
concrete fog computing applications was released lately. In [37],
we present action-oriented programming model for developing and
coordinating interactions between entities operating in the Fog. In
addition, in the paper, we highlight the pain points of the traditional
mobile app and cloud computing development in contrast to fog
computing.

5.2 RQ2: what are the current building blocks for WoT, and
who is providing them?

At the moment, the world is full of closed and open APIs [9], and
these are most basic building blocks of the WoT development as
well. Nearly, all the new IoT devices have an API for
communicating and accessing it via cloud service. In some case
also the gateways offer an API that can be used directly
communicating with the IoT devices when operating inside the
same LAN. These APIs typically follow at least some of the REST
design principles [11]. Other building blocks are various protocols
(e.g. HTTP and WebSocket) that then enable the actual
communication, as was described above. Moreover, in addition to
the things offering their APIs via cloud services, some things also
embed Web servers in them [38, 39] and then provide APIs.
However, this approach has been changing after introducing new
two-way communication protocols which are typically more light-
weight and work even when the topology of the network changes
or the device loses its IP address. For the user interface, the current
responsive HTML/CSS frameworks (Bootstrap and Foundation)
together with the front-end JavaScript frameworks (e.g. React.js,
Angular.js, Vue.js) are great building blocks. For other more
constrained devices, however, the building block for user interfaces
are yet very limited, and for this reason, we need new ways for
implementing user interfaces.

From fog computing perspective, Docker technology is one of
the most critical building blocks. It allows building microservices
that then can be deployed and maintained in various locations,
often in automated ways. Other technologies that help to leverage
the fog computing's potential are the current serverless computing
frameworks (e.g. AWS Lambda, Google Cloud Functions etc.) that
can be used in a homogenised way with the open source serverless
framework.

Despite these current building blocks, the development is at the
moment is yet forced to focus a lot on the connection and
communication-related aspects, rather than the actual application
logic. The actual development tools (e.g. Node-RED, Meshblu etc.)
poorly fit the fog computing or are such research-oriented that their
long-term support cannot be expected. Fortunately, while looking
at the numbers of published papers, the IoT and WoT development
are timely topics in the research community, and new approaches
can be expected to emerge.

At some point, it may even become possible to leverage the
existing social structures for sharing building blocks and open
APIs, as some researchers have been proposing [3]. Also, posting
one's creations to social networks (e.g. Facebook, Linkedin, Twitter
etc.) which share them automatically with trusted or otherwise
relevant people sounds promising idea. This would also mean that
we would not need to create the social networks for the sharing
from scratch. Sharing could also enable advertising one's skills

IET Softw.
© The Institution of Engineering and Technology 2018

5



(e.g. a student seeking first job). In social media, however, some
things go viral in these networks, meaning they get an enormous
amount of popularity, in the good as well as in the bad sense.

Although sharing one's creations or sensor data directly with
friends sounds like a great idea, we, however, think that yet we are
pretty far from this, as there barely is any programming models or
tools (in the context of fog computing and WoT). Moreover, the
danger also is that this would introduce too many new security and
privacy threats, as this is the case already with the things created by
the industry as we discuss later.

5.3 RQ3: Is interoperability with other systems supported,
and how can this aspect be improved?

Often standardisation is considered to be the key to
interoperability. The World Wide Web is one of the most successful
technologies in interoperability wise, and now it is going towards
harnessing physical objects to augment us in our daily lives. For
this reason, it is vital that the World Wide Web Consortium (W3C)
is drafting an abstract WoT architecture [40]. In the draft, they
mention the objective of this work to be that the WoT is intended to
enable interoperability across IoT platforms and application
domains. The fundamental idea is to maximise using the existing
and emerging tools to be used on for building new IoT scenarios.

As part of the same work, W3C is also drafting some other
standards: WoT Thing Description [41], WoT Binding Templates
[42], and WoT Scripting API [43]. Of these, the WoT Thing
Description is the primary building block, which role is to describe
an interface of a thing (WoT Interface) so that other things can then
interact with other services and things. The role of WoT Binding
Template is to enable binding the interface with multiple protocols.
A thing may use WoT Scripting API internally, which means that
the application logic can be done using JavaScript. The above is
supposed to simplify the development significantly and enable
moving the developed components fluidly. In fog computing, this
would become very useful and could be used in various use cases.

The work by W3C has a lot in common with Evrythng's Web
Thing Model approach. While Evrythng's approach has been
developed already since 2014, the W3C member submission was
submitted on 2017 [44, 45]. The W3C approach can be considered
as one of the leading approaches. However, there are a number of
other hypermedia API-level abstractions for constructing WoT
applications and for improving the interoperability that come from
consortiums as well as from individual authors. These with
include: JSON hypertext application language (JSON-HAL) [46];
media types for hypertext sensor markup (HSML) [47];
constrained RESTful application language [48]; and Web Thing
API by Mozilla [49].

One of the main purposes of the all above approaches (except
JSON HAL) is to offer bindings for different protocols to support
programming interactions between the things. However,
considering how intuitive it is to use the approach by developer it
is also important to offer high-level architecture definitions. From
the above approaches, Mozilla's Web Thing API, Evrythng's Web
Thing Model, and W3C approach are the only ones that offer such
definitions. Mozilla's Web Thing API is one of the most recent
approaches and has a lot in common with the Evrythng's Web
Thing Model approach. The fact that this approach comes from a
company may, however, be a downside since other companies may
not be willing to follow this approach. On the other hand, it is also
a positive thing that the approach comes from a big company with
a long tradition of open-source publishing their works is good thing
since it supports continuity. For example, some of the approaches
coming from small groups or individual authors (JSON-HAL [46]
and HSML [47]) seem to have expired for now. Nevertheless, all
these attempts for standardisation are important since these
highlight the importance of the standardisation work for WoT. A
more in-depth comparison of these APIs has been conducted by
Martins, Mazayev, and Correia in their paper ‘Hypermedia APIs
for the Web of Things’ [44].

At present, the IoT has a strong focus on establishing
connectivity between a variety of constrained devices and services.
Therefore, the next logical goal is to build on top of this

connectivity and begin focusing on the application layer. Thus, in
contrast to the IoT approaches, it would be great if the
standardisation work by W3C serves its purpose as this would
enable considering the devices as first-class citizens of the Web. If
the developers would have clear abstractions and they could
consider that the connection between the things established, this
would allow the developers to focus on building the applications.

We believe that at large, the WoT has all the potential to
materialise into an open ecosystem of digitally augmented physical
objects and new experiences which genuinely can help people in
their lives. At this point, we are not there yet, and plenty of
research must be conducted on improving the interoperability
between the things, as well as between cloud services.

5.4 RQ4: what are the current security and privacy issues,
and can these threats be covered?

WoT involves numerous heterogeneous entities interacting with
each other. Given the enormous number of connected devices that
are potentially vulnerable, security and privacy protection became
extremely necessary [50]. In fact, poorly secured interconnected
(malicious) IoT devices could serve as entry points for cyber
attacks towards more critical targets. In this section, we give some
considerations on current IoT technology and related security
breach and solutions (if any). Source of the following discussion
comes from some recent state of the art survey in the area [51–55]
as well as security issues analysis of the WoT [50], where a more
through discussion can be found.

The attacker model for IoT architecture is described in [56]
where the attacker can be a malicious user, a bad manufacturer, or
an external adversary:

• The malicious user is the owner of the IoT device with the
potential to perform attacks to learn the secrets of the
manufacturer and gain access to restricted functionality. By
uncovering the flaws in the system, the malicious user can
obtain information, sell secrets to third parties, or even attack
similar systems.

• The bad manufacturer is the producer of the device with the
ability to exploit the technology to gain information about the
users, or other IoT devices. Such a manufacturer can
deliberately introduce security holes in its design to be exploited
in the future for accessing the user's data and exposing it to third
parties. Equally, the production of poorly secured goods results
in compromising the users’ privacy. Besides, in IoT context,
where different objects are connected to each other, a
manufacturer can attack other competitors’ devices to harm their
reputation.

• The external adversary is an outside entity that is not part of the
system and has no authorised access to it. An adversary would
try to gain information about the user of the system for
malicious purposes such as causing financial damage and
undermining the user's credibility.

Notice that this is indeed different from classic Dolev-Yaho
model [57], where the adversary can overhear, intercept, and
synthesise any message and is only limited by the constraints of the
cryptographic methods used. In other words: ‘the attacker carries
the message’ and has a sort of ‘omnipotence’ not easy to
implement and verify, and usually considered diminished.

In [58], the authors report an in-depth study of possible
weakness and their exploitation on IoT devices. In particular, a
study of HP conducted some years ago [59], analysed ten of the
most popular IoT devices on the market and revealed a generalised
poor security level of the majority of them: most of the devices
showed privacy and confidential information leakage; two-thirds of
them used too low authentication requirements, and not strong
enough password used; only some of them used encrypted network
services, and suffer from XSS weakness.

The most common and easily addressable security issues of IoT
devices reported by HP in 2015 include [50, 59]:

6 IET Softw.
© The Institution of Engineering and Technology 2018



• Privacy concerns: The study reports that 80% of the devices
were leaking private information.

• Insufficient authorisation: According to the study 80% of the
tested devices were not protected by a proper password.

• Lack of transport encryption: According to the study 70% of the
tested devices did not encrypt communication.

• Insecure Web interface: According to the study 60% of the
tested devices had security concerns in their Web-based user
interfaces, and 70% of the systems behind the devices allowed
resolving the users’ accounts.

• Inadequate software protection: The study reports that 60% of
the devices were not securing their software updates with
encryption.

In [60], the IoT architecture is composed of three layers
(perception, network and application). We follow such view and
we will analyse security issue in each of the levels.

5.4.1 Perception layer: The perception layer is strictly connected
to the technology used for the communication. Wireless sensor
network (WSN) is the general term to classify all such (mesh)
connected devices, from centimetres to several meters of distances.
When dealing with low distance technology and protocol (such as
near field communication (NFC) or wireless network of wearable
devices (BAN)) built following 802.15.6 standards, security is
inferior. Indeed, NFC suffers from many threats (denial of service,
and information leakage) [61]. Moreover, since for backward
compatibility reason with RFID it is not encrypted, it suffers from
many man-in-the-middle attacks, using antennas or skimmers to
intercept the signals.

WSN also refers to protocols connected to the 802.15.4
standard, whose major implementations are ZigBee and 6LowPan
(and maybe someway still Bluetooth). Bluetooth is indeed the
oldest of the three technologies. Despite it is currently adopted for
indoor application with iBeacons, and the particular care of energy
consumption in the low-energy (BLE) version [62, 63], the
technology will be probably substituted for security reasons soon
by the more advanced implementation of Zigbee and 6LowPan. In
fact, despite BLE uses AES-128 CCM for encryption and
authentication purposes, it still suffers from many vulnerabilities,
and at today many of the countermeasures rely upon user security
problem awareness.

ZigBee represents a new protocol for WSN and the main used
implementation of the IEEE standard 802.15.4. Differently, from
Bluetooth, the ZigBee protocol came natively with security
features and management of both long-term and session keys. The
long-term (Master Key) is part of the factory setting, while all the
devices share the session (network) keys on the network. ZigBee
uses AES-128 encryption as the default, however, since often some
trade-offs between security and power consumption [64] and some
threats such as traffic sniffing (eavesdropping), packet decoding,
and data manipulation/injection could be possible.

6LowPan (that stand for IPv6 low-power personal area
networks) is the newest WSN standard. Its main innovation is the
use of an IPv6 address for each sensor in the mesh. The use of IPv6
addressing gives to 6LowPan universality, extensibility and
stability [65], and wrt IPv6 small packet size and low bandwidth.
Unfortunately, devices that support 6LowPan are still resource
consuming and this is the primary challenge to solve in the future
for global adoption of 6lowPan. However, from the security point
of view, 6LowPan implements elliptic curve cryptography
encryption algorithm that has smaller-packet sizes w.r.t. RSA.

5.4.2 Middleware and application layers: The middleware layer
in IoT contains a vast number of proposals, each of them with their
pros and cons. Indeed, no real standard is used in this layer because
all the vendors propose their solutions. Describing numerous
solutions and their security concerns would result in a not complete
description, and thus we suggest to the reader to start from the top
survey by Razzaque et al. [66].

The application layer, on the contrary, is today enough
standardised and the majority of the implementations use the

message queue telemetry transport (MQTT) protocol. The MQTT
protocol was proposed by Stanford-Clark and Nipper [67] as a
light-weight protocol designed for constrained devices and low-
bandwidth. At today MQTT is an OASIS and ISO/IEC JTC1
standard [68]. The OASIS MQTT TC is producing a standard for
the MQTT protocol compatible with MQTT V3.1, together with
requirements for enhancements, documented usage examples, best
practices, and guidance for the use of MQTT topics with a
commonly available registry and discovery mechanisms. The
standard supports bi-directional messaging to uniformly handle
both signals and commands, deterministic message delivery,
necessary QoS levels, always/sometimes-connected scenarios,
loose coupling, and scalability to support large numbers of devices.
Candidates for enhancements include message priority and expiry,
message payload typing, request/reply, and subscription expiry. As
an IoT connectivity protocol, MQTT is designed to support
messaging transport from remote locations/devices involving small
code footprints (e.g. 8-bit, 256 KB ram controllers), low power,
low bandwidth, high-cost connections, high latency, variable
availability, and negotiated delivery guarantees.

However, the present implementation of MQTT provides
support for only identity, authentication and authorisation policies.
Identity specifies the client that is being authorised. Authentication
provides the identity of the client and authorisation is the
management of rights given to the client. The primary approaches
used to support these policies are by using a username/password
pair, which is set by the client, for identification or by
authentication performed by the MQTT server via client certificate
validation through the SSL protocol. The MQTT server identifies
itself with its IP address and digital certificate. Its communication
uses TCP as transport layer protocol. By itself, the MQTT protocol
does not provide encrypted communication. Authorisation is also
not part of MQTT protocol but can be provided by the servers.
MQTT authorisation rules control which client can connect to the
server and what topics a client can subscribe to or publish.

In addition to investigating and discussing other security and
privacy challenges of introducing fog computing in IoT
environments, Alrawais et al. [69] necessitate that the fog
computing research should be focused on how to overcome the
challenges related to authentication in the context of fog computing
in IoT applications since this is far from trivial in such
decentralised environment. Also Zhang et al. discuss about similar
security and privacy threats towards IoT applications and discuss
the security and privacy requirements in fog computing in [70].
Further, they demonstrate potential challenges to secure fog
computing and review the state-of-the-art solutions used to address
security and privacy issues in fog computing for IoT applications
and define several open research issues. In our recent paper, we
have presented a possible solution in [37] by forming trusted
coalitions of devices [71]. The approach is connectivity agnostic,
but requires a library support for the leveraged device which may
limit its usage in WoT environment.

5.5 Threats to validity

We discuss threats to the validity of this work in the different steps
of our study.

5.5.1 Threats to the identification of primary studies: We
found it challenging to find the scope of our study. In this article
for WoT special issue, we focus on the avenues of future research.
In the paper, we assume that the emerging fog computing will
eventually enclose cloud computing. Hence, we reviewed some of
the most recent fog computing articles and mapped the KET that
were mentioned to foster the paradigm shift. The microservice
architectural style and communication-related aspects were then
present in most articles, and thus formed the core of our study and
were used as search terms for finding papers. The importance of
data and its analysis was also a significant theme among fog
computing and WoT papers, and for this reason, CEP was used as a
search term. The IoT and WoT are expected to increase privacy and
security threats dramatically, and thus we decided to focus
primarily on this aspect while selecting the studies. While this

IET Softw.
© The Institution of Engineering and Technology 2018

7



protocol helped us to focus on selecting the major themes for our
study, we naturally were not able to include all the minor themes.

5.5.2 Threats to selection and data extraction
consistency: We formulated the research questions RQ1–RQ4
which helped us to select the relevant papers for our study.
Naturally, new studies are being published all the time, especially
related to security and privacy issues, fog computing, and
microservices since these topics are very relevant at the moment.
We also intentionally excluded thesis as well as some older papers
from our study.

5.5.3 Threats to data synthesis and results: We tried to
mitigate the threat with a standard protocol of several steps, by
piloting and by externally evaluating our process by professors that
were not participating in making our study.

6 Conclusions
In this paper, we focused on describing the current technical design
space for WoT, focusing on the emerging fog computing paradigm.
We went through the critical enabling technologies that have
gained particular popularity among the developers, and which form
the basis of building WoT systems and software. Afterwards, we
defined research questions of WoT research and outlined
motivation for future research in this area. We described some
research areas trying to solve our outlined research challenges.
Then, we continued the discussion on the retrospective.

The outcome of this work is that WoT research should take a
new path, moving from centralised RESTful and cloud service-
based approaches towards more decentralised approaches, and aim
at leveraging the full potential of the dynamic and modern
computing environment, reaching from the edge devices and
network nodes to the clouds. As the modern computing
environment is heterogeneous, the Web-based technologies give a
good base and support the fluidity required by the fog computing.
Like all technologies, also Web technologies have their flaws
which mainly are related to their limited support in some hardware
platforms and some limitations in accessing the hardware
resources. Nevertheless, due to the openness and support for
heterogeneity, Web technologies in the context of the IoT have
earned their place, and thus will continue growing their popularity
among the IoT development.

7 Acknowledgments
The work of N. Mäkitalo was supported by the Academy of
Finland (project 295913).

8 References
[1] Stirbu, V.: ‘Towards a restful plug and play experience in the Web of Things’.

2008 IEEE Int. Conf. Semantic Computing, August 2008, pp. 512–517
[2] Guinard, D.: ‘Towards the Web of Things: Web mashups for embedded

devices’. In MEM 2009 in Proc. WWW 2009, 2009
[3] Guinard, D., Trifa, V., Mattern, F., et al.: ‘From the Internet of Things to the

Web of Things: resource-oriented architecture and best practices’, in
Uckelmann, D., Harrison, M., Michahelles, F. (Eds.): ‘Architecting the
Internet of Things’ (Springer, Berlin, Heidelberg, 2011), pp. 97–129

[4] Tran, N.K., Sheng, Q.Z., Babar, M.A., et al.: ‘Searching the Web OF Things:
state of the art, challenges, and solutions’, ACM Comput. Surv., 2017, 50, pp.
55:1–55:34

[5] Bonomi, F., Milito, R., Zhu, J., et al.: ‘Fog computing and its role in the
Internet of Things’. Proc. First Edition of the MCC Workshop on Mobile
Cloud Computing, 2012, pp. 13–16

[6] Dastjerdi, A.V., Buyya, R.: ‘Fog computing: helping the Internet of Things
realize its potential’, Computer, 2016, 49, pp. 112–116

[7] Taivalsaari, A., Mikkonen, T., Anttonen, M., et al.: ‘The death of binary
software: end user software moves to the Web’. Creating, Connecting and
Collaborating Through Computing (C5), 2011 Ninth Int. Conf., January 2011,
pp. 17–23

[8] Shi, W., Dustdar, S.: ‘The promise of edge computing’, Computer, 2016, 49,
pp. 78–81

[9] Taivalsaari, A., Mikkonen, T.: ‘A roadmap to the programmable world:
software challenges in the IoT era’, IEEE Softw., 2017, 34, pp. 72–80

[10] Mäkitalo, N., Aaltonen, T., Mikkonen, T.: ‘Coordinating proactive social
devices in a mobile cloud: lessons learned and a way forward’. Proc. Int.
Conf. Mobile Software Engineering and Systems, MOBILESoft ‘16, New
York, NY, USA, 2016, pp. 179–188

[11] Fielding, R.T.: ‘REST: architectural styles and the design of network-based
software architectures’. Doctoral dissertation, University of California, Irvine,
2000

[12] Internet engineering task force (IETF), RFC 7540 – hypertext transfer
protocol version 2 (HTTP/2), May 2015

[13] Bermbach, D., Pallas, F., Pérez, D.G., et al.: ‘A research perspective on Fog
computing’. Proc. 2nd Workshop on IoT Systems Provisioning &
Management for Context-Aware Smart Cities, Springer, 2017

[14] Gallidabino, A., Pautasso, C., Ilvonen, V., et al.: ‘Architecting liquid
software’, J. Web Eng., 2017, 16, (5&6), pp. 433–470

[15] Luckham, D.: ‘The power of events’ (Addison-Wesley, Reading, 2002), vol.
204

[16] Cugola, G., Margara, A.: ‘Processing flows of information: from data stream
to complex event processing’, ACM Comput. Surv. (CSUR), 2012, 44, (3), p.
15

[17] Dayarathna, M., Perera, S.: ‘Recent advancements in event processing’, ACM
Comput. Surv., 2018, 51, pp. 33:1–33:36

[18] Randika, H., Martin, H., Sampath, D., et al.: ‘Scalable fault tolerant
architecture for complex event processing systems’. Advances in ICT for
Emerging Regions (ICTer), 2010 Int. Conf., 2010, pp. 86–96

[19] Zhang, H., Diao, Y., Immerman, N.: ‘On complexity and optimization of
expensive queries in complex event processing’. Proc. 2014 ACM SIGMOD
Int. Conf. Management of data, 2014, pp. 217–228

[20] Cugola, G., Margara, A.: ‘Deployment strategies for distributed complex
event processing’, Computing, 2013, 95, (2), pp. 129–156

[21] Soto, J.A.C., Jentsch, M., Preuveneers, D., et al.: ‘CEML: mixing and moving
complex event processing and machine learning to the edge of the network for
IoT applications’. Proc. 6th Int. Conf. Internet of Things, IoT'16, New York,
NY, USA, 2016, pp. 103–110

[22] Mayer, R., Tariq, M.A., Rothermel, K.: ‘Minimizing communication overhead
in window-based parallel complex event processing’. Proc. 11th ACM Int.
Conf. Distributed and Event-based Systems, 2017, pp. 54–65

[23] Starks, F., Plagemann, T.P., Kristiansen, S.: ‘DCEP-SIM: an open simulation
framework for distributed CEP’. Proc. 11th ACM Int. Conf. Distributed and
Event-based Systems, 2017, pp. 180–190

[24] Alshuqayran, N., Ali, N., Evans, R.: ‘A systematic mapping study in
microservice architecture’. 2016 IEEE 9th Int. Conf. Service-Oriented
Computing and Applications (SOCA), November 2016, pp. 44–51

[25] Francesco, P.D., Malavolta, I., Lago, P.: ‘Research on architecting
microservices: trends, focus, and potential for industrial adoption’. 2017 IEEE
Int. Conf. Software Architecture (ICSA), April 2017, pp. 21–30

[26] Lewis, J., Fowler, M.: ‘Microservices’. Available at https://martinfowler.com/
articles/microservices.html, accessed March 2015

[27] Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., et al.: ‘Microservices:
yesterday, today, and tomorrow’, CoRR, vol. abs/1606.04036, 2016

[28] Thönes, J.: ‘Microservices’, IEEE Softw., 2015, 32, pp. 116–116
[29] Pahl, C., Jamshidi, P.: ‘Microservices: a systematic mapping study’.

CLOSER, 2016, vol. 1, pp. 137–146
[30] Mayer, S., Karam, D.S.: ‘A computational space for the Web of Things’. Proc.

Third Int. Workshop on the Web of Things, 2012, p. 8
[31] Aggarwal, C.C., Ashish, N., Sheth, A.: ‘The Internet of Things: a survey from

the data-centric perspective’, in ‘Managing and mining sensor data’
(Springer, Boston, MA, USA, 2013), pp. 383–428

[32] Guinard, D., Trifa, V.: ‘Building the Web of Things: with examples in node. js
and raspberry pi’ (Manning Publications Co., Greenwich, CT, USA, 2016)

[33] Mahmud, R., Kotagiri, R., Buyya, R.: ‘Fog computing: a taxonomy, survey
and future directions’, in ‘Internet of everything’ (Springer, Singapore, 2018),
pp. 103–130

[34] Wen, Z., Yang, R., Garraghan, P., et al.: ‘Fog orchestration for IoT services:
issues, challenges and directions’, IEEE Internet Comput., 2017, 21, (2), pp.
16–24

[35] Byers, C.C.: ‘Architectural imperatives for fog computing: use cases,
requirements, and architectural techniques for fog-enabled IoT networks’,
IEEE Commun. Mag., 2017, 55, (8), pp. 14–20

[36] Rahmani, A.M., Gia, T.N., Negash, B., et al.: ‘Exploiting smart e-health
gateways at the edge of healthcare Internet-of-Things: a fog computing
approach’, Future Gener. Comput. Syst., 2018, 78, pp. 641–658

[37] Mäkitalo, N., Ometov, A., Kannisto, J., et al.: ‘Safe and secure execution at
the network edge: a framework for coordinating cloud, fog, and edge’, IEEE
Softw., 2018

[38] Guinard, D., Trifa, V., Wilde, E.: ‘A resource oriented architecture for the
Web of Things’, Internet of Things (IOT), 2010, pp. 1–8

[39] Fielding, R.T., Taylor, R.N.: ‘Principled design of the modern Web
architecture’, ACM Trans. Internet Technol. (TOIT), 2002, 2, (2), pp. 115–150

[40] Kajimoto, K., Kovatsch, M., Davuluru, U.: ‘Web of Things (WoT)
architecture’, Technical Report, World Wide Web Consortium (W3C), 09
2017

[41] Kaebisch, S., Kamiya, T.: ‘Web of Things (WoT) thing description’, Technical
Report, World Wide Web Consortium (W3C), 09 2017

[42] Koster, M.: ‘Web of Things (WoT) protocol binding templates’, Technical
Report, World Wide Web Consortium (W3C), 10 2017

[43] Kis, Z., Nimura, K., Peintner, D., et al.: ‘Web of Things (WoT) scripting
API’, Technical Report, World Wide Web Consortium (W3C), 10 2017

[44] Martins, J. A., Mazayev, A., Correia, N.: ‘Hypermedia APIS for the Web of
Things’, IEEE Access, 2017, 5, pp. 20058–20067

[45] Trifa, V., Guinard, D., Carrera, D.: ‘Web thing model W3C Member
Submission’, Technical Report, World Wide Web Consortium (W3C), 04
2017

[46] Kelly, M.: ‘JSON hypertext application language (JSON-HAL)’, Technical
Report, IETF, 11 2016

[47] Koster, M.: ‘Media types for hypertext sensor markup (HSML)’, Technical
Report, IETF, 09 2017

8 IET Softw.
© The Institution of Engineering and Technology 2018

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html


[48] Hartke, K.: ‘The constrained RESTful application language (CoRAL)’,
Technical Report, IETF, 10 2017

[49] Francis, B.: ‘Web thing API (unofficial draft)’, Technical Report, World Wide
Web Consortium (W3C), 03 2018

[50] El Jaouhari, S., Bouabdallah, A., Bonnin, J.-M.: ‘Security issues of the web of
things’, in ‘Managing the web of things’ (Elsevier, Boston, MA, USA, 2017),
pp. 389–424

[51] Mendez, D.M., Papapanagiotou, I., Yang, B.: ‘Internet of Things: survey on
security and privacy’, CoRR, vol. abs/1707.01879, 2017

[52] Yang, Y., Wu, L., Yin, G., et al.: ‘A survey on security and privacy issues in
internet-of-things’, IEEE Internet Things J., 2017, 4, (5), pp. 1250–1258

[53] Alaba, F.A., Othman, M., Hashem, I.A.T., et al.: ‘Internet of Things security:
a survey’, J. Netw. Comput. Appl., 2017, 88, pp. 10–28

[54] Granjal, J., Monteiro, E., Silva, J.S.: ‘Security for the Internet of Things: a
survey of existing protocols and open research issues’, IEEE Commun. Surv.
Tutorials, 2015, 17, (3), pp. 1294–1312

[55] Fremantle, P., Scott, P.: ‘A survey of secure middleware for the Internet of
Things’, Peer J. Comput. Sci., 2017, 3, p. e114

[56] Atamli, A., Martin, A.P.: ‘Threat-based security analysis for the Internet of
Things’, 2014 Int. Workshop on Secure Internet of Things, SIoT 2014,
Wroclaw, Poland, September 10, 2014, pp. 35–43

[57] Dolev, D., Yao, A.C.: ‘On the security of public key protocols’, IEEE Trans.
Inf. Theory, 1983, 29, (2), pp. 198–207

[58] Dragoni, N., Giaretta, A., Mazzara, M.: ‘The internet of hackable things’,
CoRR, vol. abs/1707.08380, 2017

[59] ‘Internet of Things research study’. Available at http://
www8.hp.com/us/en/hp-news/press-release.html?id=1744676, 2015, accessed
30 November 2017

[60] Zhao, K., Ge, L.: ‘A survey on the Internet of Things security’. Ninth Int.
Conf. Computational Intelligence and Security, CIS 2013, EMEI Mountain,
Sichan Province, China, December 14–15, 2013, pp. 663–667

[61] Madlmayr, G., Langer, J., Kantner, C., et al.: ‘NFC devices: security and
privacy’. Proc. Third Int. Conf. Availability, Reliability and Security, ARES

2008, Technical University of Catalonia, Barcelona, Spain, March 4–7 2008,
pp. 642–647

[62] Zafari, F., Papapanagiotou, I.: ‘Enhancing ibeacon based micro-location with
particle filtering’. 2015 IEEE Global Communications Conf., GLOBECOM
2015, San Diego, CA, USA, December 6–10 2015, pp. 1–7

[63] Zafari, F., Papapanagiotou, I., Devetsikiotis, M., et al.: ‘Enhancing the
accuracy of ibeacons for indoor proximity-based services’. IEEE Int. Conf.
Communications, ICC 2017, Paris, France, May 21–25 2017, pp. 1–7

[64] Boyle, D., Newe, T.: ‘Securing wireless sensor networks: security
architectures’, JNW, 2008, 3, (1), pp. 65–77

[65] Sheng, Z., Yang, S., Yu, Y., et al.: ‘A survey on the IETF protocol suite for the
Internet of Things: standards, challenges, and opportunities’, IEEE Wirel.
Commun., 2013, 20, pp. 91–98

[66] Razzaque, M. A., Milojevic-Jevric, M., Palade, A., et al.: ‘Middleware for
Internet of Things: a survey’, IEEE Internet Things J., 2016, 3, (1), pp. 70–95

[67] OASIS Message Queuing Telemetry Transport (MQTT) TC: ‘MQTT Version
3.1.1’, Standard, Oasis, October 2014. Edited by Andrew Banks and Rahul
Gupta. 29 October 2014. OASIS Standard. Available at http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. Latest version: http://
docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

[68] I.J.I. Technology.: ‘ISO/IEC 20922:2016’, Standard, International
Organization for Standardization (ISO), June 2016

[69] Alrawais, A., Alhothaily, A., Hu, C., et al.: ‘Fog computing for the Internet of
Things: security and privacy issues’, IEEE Internet Comput., 2017, 21, (2),
pp. 34–42

[70] Ni, J., Zhang, K., Lin, X., et al.: ‘Securing fog computing for Internet of
Things applications: challenges and solutions’, IEEE Commun. Surv.
Tutorials, 2017

[71] Ometov, A., Masek, P., Urama, J., et al.: ‘Implementing secure network-
assisted d2d framework in live 3GPP LTE deployment’. 2016 IEEE Int. Conf.
Communications Workshops (ICC), Kuala Lumpur, Malaysia, May 2016, pp.
749–754

IET Softw.
© The Institution of Engineering and Technology 2018

9

http://www8.hp.com/us/en/hp-news/press-release.html?id=1744676
http://www8.hp.com/us/en/hp-news/press-release.html?id=1744676
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

