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Abstract. Recommender systems have shown to be a successful repre-
sentative of how data availability can ease our everyday digital life. How-
ever, data privacy is one of the most prominent concerns in the digital
era. After several data breaches and privacy scandals, the users are now
worried about sharing their data. In the last decade, Federated Learning
has emerged as a new privacy-preserving distributed machine learning
paradigm. It works by processing data on the user device without col-
lecting data in a central repository. In this paper, we present FedeRank,
a federated recommendation algorithm. The system learns a personal
factorization model onto every device. The training of the global model
is modeled as a synchronous process between the central server and the
federated clients. FedeRank takes care of computing recommendations in
a distributed fashion and allows users to control the portion and type of
data they want to share. By comparing with state-of-the-art centralized
algorithms, extensive experiments show the effectiveness of FedeRank in
terms of recommendation accuracy, even with a small portion of shared
user data. Further analysis of the recommendation lists’ diversity and
novelty guarantees the suitability of the algorithm in real production
environments.

Keywords: Recommender Systems · Collaborative Filtering · Federated
Learning · Learning to Rank

1 Introduction

Recommender Systems (RSs) are well-known information-filtering systems widely
adopted for mitigating the information-overload problem. Indeed, the broad
amount of items and services has caused a cognitive impairment that takes the
name of over-choice, or choice overload. RSs have proved to be very useful in
making possible personalized access to these catalogs of items. These systems are
generally hosted on centralized servers and train their models by exploiting mas-
sive proprietary and sensitive data. However, public awareness related to data
collection was spurred and increased. In recent years, an increasing number of
countries have introduced regulations to protect user privacy and data security.
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Representative examples are the GDPR in the European Union [12], the CCPA
in California [7], and the Cybersecurity Law in China [38]. Such data protection
policies prohibit free data circulation and force personal data to remain isolated
and fragmented.

In this context, Google has recently proposed Federated Learning (FL) as a
privacy-by-design technique which tackles data isolation while meeting the need
for big data [20, 30]. FL trains a global machine-learning model by leveraging
both users’ data and personal devices’ computing capabilities. Unlike previous
approaches, it keeps data on the devices (e.g., laptops, mobile phones, tablets,
and edge devices) without sharing them with a central server. Today, Federated
Learning is considered the best candidate to face the data privacy, control, and
property challenges posed by the data regulations.

Among the recommendation paradigms proposed in the literature, Collabo-
rative Filtering (CF) demonstrated a very high accuracy [29, 41]. The strength
of CF recommendation algorithms is that users who expressed similar tastes in
the past tend to agree in the future as well. One of the most prominent CF ap-
proaches is the Latent Factor Model (LFM) [23]. LFMs uncover users and items
latent representation, whose linear interaction can explain observed feedback.

In this paper, we introduce FedeRank, a novel factorization model that em-
braces the Federated Learning paradigm. A disruptive effect of employing Fed-
eRank is that users participating in the federation process can decide if and how
they are willing to disclose their private sensitive preferences. Indeed, FedeRank
mainly leverages non-sensitive information (e.g., items the user has not experi-
enced). Here, we show that even only a small amount of sensitive information
(i.e., items the user has experienced) lets FedeRank reach a competitive accu-
racy. How incomplete data impacts the performance of the system is an entirely
unexplored field. Analogously, it is still to establish the minimum amount of data
necessary to build an accurate recommendation system [40]. At the same time,
preserving privacy at the cost of a worse tailored recommendation may frustrate
users and reduce the ”acceptance of the recommender system” [32]. In this work,
instead of focusing on how to protect personal information from privacy breaches
(that is explored in other active research fields), we investigate how to guarantee
the users the control and property of their data as determined by regulations.
The work’s contributions are manifold due to the number of open challenges
that still exist with the new Federated Learning paradigm. To summarize, our
contributions in this paper include:

– the development of the first, to the best of our knowledge, federated pair-wise
recommendation system, and an analysis of the quality of recommendation
with respect to local computation amount;

– an investigation on the best trade-off between between sharing personal data
and recommendation utility;

– an analysis of the algorithmic bias on the final recommendation lists, based
on the feedback deprivation level.

To this extent, we have carried out extensive experiments on three real-world
datasets (Amazon Digital Music, LibraryThing , and MovieLens 1M ) by consid-



FedeRank: User Controlled Feedback with Federated Recommender Systems 3

ering two evaluation criteria: (a) the accuracy of recommendations measured by
exploiting precision and recall, (b) beyond-accuracy measures to evaluate the
novelty, and the diversity of recommendation lists. The experimental evaluation
shows that FedeRank provides high-quality recommendations, even though it
leaves users in control of their data.

2 Related Work

In the last decades, academia and industry have proposed several competitive
recommendation algorithms. Among the Collaborative Filtering algorithms, the
most representative examples are undoubtedly Nearest Neighbors systems, La-
tent Factor Models, and Neural Network-based recommendation systems. The
Nearest Neighbors scheme has shown its competitiveness for decades. After them,
factorization-based recommendation emerged thanks to the disruptive idea of
Matrix Factorization (MF). Nevertheless, several generalized/specialized vari-
ants have been proposed, such as FM [33], SVD++ [21], PITF [36], FPMC [35].
Unfortunately, rating-prediction-oriented optimization, like SVD, has shown its
limits in the recommendation research [31]. Consequently, a new class of Learn-
ing to Rank algorithms has been developed in the last decade, mainly ranging
from point-wise [25] to pair-wise [34], through List-wise [37] approaches. Among
pair-wise methods, BPR [34] is one of the most broadly adopted, thanks to its
outstanding capabilities to correctly rank preserving an acceptable computa-
tional complexity. Finally, in the last years, methods that exploit the various ar-
chitectures of deep neural networks have established themselves either in search
and recommendation research.

To make RSs work properly (easing the user decision-making process and
boosting the business), they need to collect user information related to attributes,
demands, and preferences [17], jeopardizing the user’s privacy. In this scenario
— and, more generally, in any scenario with a system learning from sensitive
data — Federated Learning was introduced for meeting privacy shortcomings
by horizontally distributing the model’s training over user devices [30]. Beyond
privacy, Federated Learning has posed several other challenges and opened new
research directions [18]. In the last years, Federated learning has extended to a
more comprehensive idea of privacy-preserving decentralized collaborative ML
approaches [39]. These techniques included horizontal federations where different
devices (and local datasets) share the same feature space. On the contrary, in
vertical federations, devices share training samples that differ in feature space.

Some researchers focused the attention on the decentralized and distributed
matrix-factorization approaches [11, 13]. However, in this work, we focus on fed-
erated learning principles theoretically and practically different from classical
distributed approaches. Indeed, Federated Learning assumes the presence of a
coordinating server and the use of private and self-produced data on each node.
In general, distributed approaches do not guarantee these assumptions. Ammad-
ud-din et al. [3] propose a federated implementation of collaborative filtering,
whose security limits are analyzed in [10], which uses the SVD-MF method
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for implicit feedback [16]. Here, the training is a mixture of Alternating Least
Squares (ALS) and Stochastic Gradient Descent (SGD) for preserving users’ pri-
vacy. Nevertheless, incomprehensibly, almost no work addressed top-N recom-
mendation exploiting the “Learning to rank” paradigm. In this sense, one rare
example is the work by Kharitonov et al. [19], who recently proposed to combine
evolution strategy optimization with a privatization procedure based on differ-
ential privacy. The previous work focuses neither on search or recommendation.
Perhaps, like ours, it can be classified as a federated learning-to-rank algorithm.
Finally, Yang et al. [40] identified some recent Federated Learning challenges
and open research directions.

3 Approach

In this section, we introduce the fundamental concepts regarding the Collabora-
tive Filtering recommendation using a Federated Learning scheme. Along with
the problem definition, the notation we adopt is presented.
The recommendation problem over a set of users U and a set of items I
is defined as the activity of finding for each user u ∈ U an item i ∈ I that
maximizes a utility function g : U × I → R. Let X ∈ R|U|×|I| be the user-item
matrix containing for each element xui an implicit feedback (e.g., purchases,
visits, clicks, views, check-ins) of user u ∈ U for item i ∈ I. Therefore, X
only contains binary values, xui = 1 and xui = 0 denoting whether user u has
consumed or not item i, respectively.
The recommendation model is based on Factorization approach, originally
introduced by Matrix Factorization [24], that became popular in the last decade
thanks to its state-of-the-art recommendation accuracy [26]. This technique aims
to build a model Θ in which each user u and each item i is represented by the
embedding vectors pu and qi, respectively, in the shared latent space RF . Let
assume X can be factorized such that the dot product between pu and qi can
explain any observed user-item interaction xui, and any non-observed interaction
can be estimated as x̂ui(Θ) = bi(Θ) + pTu (Θ) ·qi(Θ) where bi is a term denoting
the bias of the item i.

Among pair-wise approaches for learning-to-rank the items of a catalog,
Bayesian Personalized Ranking [34] is the most broadly adopted, thanks to its
capabilities to correctly rank with acceptable computational complexity. Given
a training set defined by K = {(u, i, j) | xui = 1 ∧ xuj = 0}, BPR min-
imizes the ranking loss by exploiting the criterion max

Θ
G(Θ), with G(Θ) =∑

(u,i,j)∈K ln σ(x̂uij(Θ)) − λ‖Θ‖2, where x̂uij(Θ) = x̂ui(Θ) − x̂uj(Θ) is a real

value modeling the relation between user u, item i and item j, σ(·) is the sig-
moid function, and λ is a model-specific regularization parameter to prevent
overfitting. Pair-wise optimization applies to a wide range of recommendation
models, including factorization. Hereafter, we denote the model Θ = 〈P,Q,b〉,
where P ∈ R|U|×F is a matrix whose u-th row corresponds to the vector pu,
and Q ∈ R|I|×F is a matrix in which the i-th row corresponds to the vector qi.
Finally, b ∈ R|I| is a vector whose i-th element corresponds to the value bi.
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3.1 FedeRank

FedeRank redesigns the original factorization approach for a federated setting.
Indeed, the initial factorization model and its variants use a single, centralized
model, which does not guarantee users to control their data. FedeRank splits the
pair-wise learning model Θ among a central server S and a federation of users
U . Federated learning aims to optimize a global loss function by using data
distributed among a federation of users’ devices. The rationale is that the server
no longer collects private users’ data. Rather, it aggregates the results of some
steps of local optimizations performed by clients, preserving privacy, ownership,
and locality of users’ data [6]. Formally, let Θ be the machine learning model
parameters, and G(Θ) be a loss function to minimize. In Federated learning,
the users U of a federation collaborate to minimize G (under the coordination
of a central server S) without sharing or exchanging their raw data. From an
algorithmic point of view, S shares Θ with the federation of devices. Then,
the optimization problem of minimizing G is locally solved. Since each user
participates to the federation with her personal data and with her personal
client device, we hereinafter will interchangeably use the terms “client”, “user”,
and “device”.

To set up the framework, we consider the central server S holding a model
ΘS = 〈Q,b〉, where Q ∈ R|I|×F is a matrix in which i-th row represents the
embedding qi for item i in the catalog, while the element bi of b ∈ R|I| is the bias
of item i. On the other hand, each user u ∈ U holds a local model Θu = 〈pu〉,
where pu ∈ RF corresponds to the representation of user u in the latent space
of dimensionality F . Each user holds a private interaction dataset xu ∈ R|I|,
which — compared to a centralized recommender system — corresponds to the
X’s u-th row. The user u leverages her private dataset xu to build the local
training set Ku = {(u, i, j) | xui = 1 ∧ xuj = 0}. Finally, the overall number of
interactions in the system can be obtained by exploiting the local datasets. Let
us define it as X+ =

∑
u∈U |{xui|xui = 1}|.

The training procedure iterates for E epochs, in each of which rpe rounds
of communication between the server and the devices are performed. A round
of communication envisages a Distribution to Devices → Federated Op-
timization → Transmission to Server → Global Aggregation sequence.
The notation {·}tS denotes an object computed by the server S at round t, while
{·}tu indicates an object computed by a specific client u at round t.

1. Distribution to Devices. Let {U−}tS be a subset of U with cardinality m,
containing m clients u ∈ U . The set {U−}tS can be either defined by S, or
the result of a request for availability sent by S to clients in U . Each client
u ∈ {U−}tS receives from S the latest snapshot of {ΘS}t−1S .

2. Federated Optimization. Each user u ∈ {U−}tS generates the set {K−u }tu
containing T random triples (u, i, j) from Ku. It is worth underlining that
Rendle [34] suggests, for a centralized scenario, to train the recommendation
model by randomly choosing the training triples from K, to avoid data is
traversed item-wise or user-wise, since this may lead to slow convergence.
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Conversely, in a federated approach, we require to train the model user-wise.
Indeed, the learning is separately performed on each device (u), that only
knows the data in Ku. Thanks to the user-wise traversing, FedeRank can
decide who controls (the designer or the user) the number of triples T in
the training set {K−u }tu, to tune the degree of local computation. With the
local training set, the user u can compute her contribution to the overall
optimization of ΘS with the following update:

{∆ΘS}tu = {∆ 〈Q,b〉}tu :=
∑

(u,i,j)∈{K−u }tu

∂

∂ΘS
ln σ(x̂uij({ΘS}t−1S ; {Θu}t−1u )),

(1)
plus a regularization term. At the same time, the client u updates its local
model Θu, and incorporates it in the current model by using:

{∆Θu}tu = {∆ 〈pu〉}tu :=
∑

(u,i,j)∈{K−u }tu

∂

∂Θu
ln σ(x̂uij({ΘS}t−1S ; {Θu}t−1u )),

(2)
plus a regularization term. The partial derivatives in Eq. 1 and 2 are straight-
forward, and can be easily computed by following the scheme proposed by
Rendle et al. [34].
At the end of the federated computation, each client can update its local
model Θu — containing the user profile — by aggregating the computed
update:

{Θu}tu := {Θu}t−1u + α{∆Θu}tu, (3)

with α being the learning rate.
3. Transmission to Server. In a purely distributed architecture, each user in
U− returns to S the computed update. Here, instead of sending {∆ΘS}tu,
each user transmits a modified version {∆ΘΦS}tu. To introduce this aspect of
FedeRank, let us define F = {i, ∀(u, i, j) ∈ {K−u }tu}, and Φ =

〈
QΦ,bΦ

〉
, with

QΦ ∈ R|I|×F , and bΦ ∈ R|I|.
Each row qΦi of QΦ and each element bΦi of bΦ assume their value according
to the probabilities:

P (qΦi = 1, bΦi = 1 | i ∈ F) = π, P (qΦi = 0, bΦi = 0 | i ∈ F) = 1− π,
P (qΦi = 1, bΦi = 1 | i /∈ F) = 1

(4)

Based on {QΦ}tu and {bΦ}tu, ∆ΘΦS can be computed as it follows:

{∆ΘΦS}tu = {∆ΘS}tu � {Φ}tu :=
〈
{∆Q}tu � {QΦ}tu, {∆b}tu � {bΦ}tu

〉
, (5)

where the operator � denotes the Hadamard product. This transformation is
motivated by a possible privacy issue.
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The update ∆Q computed in Eq. 1 is a matrix whose rows are non-zero in
correspondence of the items i and j of all the triples (u, i, j) ∈ K−u [34]. An
analogous behavior can be observed for the elements of ∆b. Focusing on the
non-zero elements, we observe that, for each triple (u, i, j) ∈ K−u , the updates
{∆qi}tu and {∆qj}tu, as well as {∆bi}tu and {∆bj}tu, show the same absolute
value with opposite sign [34]. In fact, this makes completely distinguishable
for the server the consumed and the non-consumed items of user u, allowing
S to reconstruct K−u , thus raising a privacy issue.

Since our primary goal is to put users in control of their data, we leave users
the possibility to choose a fraction π of positive item updates to send. The
remaining positive item updates (a fraction 1 − π) are masked by setting
them to zero, by means of the transformation in Eq. 5. On the other hand,
the negative updates are always sent to S, since their corresponding rows are
always multiplied by a 1 vector. Indeed, these updates are related to non-
consumed items, which are indistinguishably negative or missing values and
are assumed to be non-sensitive data.

4. Global Aggregation. Once S has received {∆ΘΦS}tu from all clients u ∈ U−,
it aggregates the received updates in Q and b to build the new global model,
with α being the learning rate:

{ΘS}tS := {ΘS}t−1S + α
∑
u∈U−

{∆ΘΦS}tu. (6)

4 Experiments

Datasets. We have investigated the performance of FedeRank considering three
well-known datasets: Amazon Digital Music [28], LibraryThing [42], and Movie-
Lens 1M [15]. The former includes the users’ satisfaction feedback for a catalog
of music tracks available with Amazon Digital Music service. It contains 1,835
users and 41,488 tracks, with 75,932 ratings ranging from 1 to 5. LibraryThing
collects the users’ ratings on a book catalog. It captures the interactions of 7,279
users on 37,232 books. It provides more than two million ratings with 749,401
unique ratings in a range from 1 to 10. The latter is MovieLens 1M dataset,
which collects users’ ratings in the movie domain: it contains 1,000,209 ratings
ranging from 1 to 5, 6,040 users, and 3,706 items. We have filtered out users
with less than 20 ratings (considering them as cold-users). Table 1 shows the
characteristics of the resulting datasets adopted in the experiments.

Baseline Algorithms. We compared FedeRank with representative centralized
algorithms to position its performance with respect to the state-of-the-art tech-
niques: VAE [27], a non-linear probabilistic model taking advantage of Bayesian
inference to estimate the model parameters; User-kNN and Item-kNN [22],
two neighbor-based CF algorithms, that exploit cosine similarity to compute sim-
ilarity between users or items; BPR-MF [34], the centralized vanilla BPR-MF
implementation; and FCF [3], the only federated recommendation approach,
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Table 1: Characteristics of the evaluation dataset used in the offline experiment:
|U| is the number of users, |I| the number of items, X+ the amount of positive
feedback.

Dataset |U| |I| X+ X+

|U|
X+

|I|
X+

|I|·|U|%

Amazon DM 1,835 41,488 75,932 41.38 1.83 0.000997%
LibraryThing 7,279 37,232 749,401 102.95 20.13 0.002765%
MovieLens 1M 6,040 3,706 1,000,209 165.60 269.89 0.044684%

to date, based on MF1. We have evaluated FedeRank considering |U−| = 1.
That is, in each round of communication we involve only a single client to avoid
noisy results. We thereby guarantee the sequential training, needed to compare
against centralized pir-wise techniques. We have investigated with two different
FedeRank settings. In the first setting, we have set T = 1, i.e., each client
extracts solely one triple (u, i, j) from its dataset when asked for training the
model; with this special condition, we test if FedeRank is effectively comparable
to BPR. Moreover, to make the comparison completely fair, we extract triples
as proposed by Rendle et al. [34]. The second setting follows a real Feder-
ated scenario where the client local computation is not limited to a single triple.

Specifically, the number T of triples extracted by each client is set to X+

|U| .

Reproducibility and Evaluation Metrics. To train FedeRank, we have
adopted a realistic temporal hold-out 80-20 splitting for the training set and
test set [14]. We have further split the training set adopting a temporal hold-
out strategy on a user basis to pick the last 20% of interactions as a validation
set. Hence, we have explored a grid in the range {0.005, . . . , 0.5}. Then, to en-
sure a fair comparison, we have used the same learning rate to train FedeRank.
We have set up the remaining parameters as follows: the user- and positive
item-regularization parameter is set to 1/20 of the learning rate; conversely, the
negative item-regularization parameter is set to 1/200 of the learning rate as
suggested in mymedialite2 implementation as well as in [4]. Moreover, for each
setting, we have selected the best model in the first 20 epochs. Finally, the
number of latent factors is equal to 20. This value reflects a trade-off between
latent factors’ expressiveness and memory space limits (given by a realistic Fed-
erated Learning environment). We have measured the recommendation accuracy
by exploiting: Precision (P@N) (the proportion of relevant items in the recom-
mendation list), and Recall (R@N), that measures the relevant suggested items.
Regarding diversity, we have adopted Item Coverage (IC) and Gini Index (G).
The former provides the overall number of diverse recommended items, and it
highlights the degree of personalization expressed by the model [1]. The latter
measures how unequally an RS provides users with different items [9], being
higher values corresponding to more tailored lists.

1 Since no source code is available, we reimplemented it in the reader’s interest.
2 http://www.mymedialite.net/
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Table 2: Recommendation performance of FedeRank on Amazon Digital Music,
LibraryThing and MovieLens 1M , with respect to the other baselines. For each
configuration of T , we show the best FedeRank setting of π based on P@10.

Amazon Digital Music LibraryThing MovieLens 1M

P@10 R@10 IC@10 G@10 P@10 R@10 IC@10 G@10 P@10 R@10 IC@10 G@10

Random 0.00005 0.00005 14186 0.28069 0.00054 0.00028 31918 0.60964 0.00871 0.00283 3666 0.85426
Most Popular 0.00469 0.00603 24 0.00023 0.05013 0.03044 36 0.00031 0.10224 0.03924 118 0.00569
User-kNN 0.01940 0.02757 4809 0.04115 0.14193 0.10115 3833 0.01485 0.12613 0.06701 737 0.04636
Item-kNN 0.02147 0.03171 4516 0.03801 0.20214 0.14778 12737 0.09979 0.08873 0.05475 2134 0.19292
VAE 0.01580 0.02289 3919 0.04179 0.10834 0.07711 7800 0.04638 0.11735 0.06192 1476 0.09259

BPR-MF 0.00921 0.01298 739 0.00415 0.07009 0.04303 3082 0.01359 0.11911 0.05817 1444 0.08508
FCF 0.00839 0.01222 2655 0.01861 0.10760 0.04392 829 0.01305 0.10760 0.04392 829 0.01305
FedeRank
T = 1 0.00610 0.00889 349 0.00136 0.06309 0.03738 1650 0.00512 0.11805 0.05902 1041 0.06608

T = X+/|U| 0.01422 0.02060 2586 0.02153 0.08512 0.05627 5404 0.02784 0.11599 0.05571 1326 0.02513

4.1 Performance of Federated Learning to Rank

We begin our experimental evaluation by investigating the efficacy of FedeRank,
and we assess whether its performance is comparable to baseline algorithms.
Table 2 depicts the results in terms of accuracy and diversity. For FedeRank, we
reported distinct results related to the two federated experimental settings. The
Table is visually split into two parts. The algorithms in the bottom part (BPR-
MF, FCF, and FedeRank) are the factorization-based models. The upper part
provides the positioning of FedeRank to the other state-of-the-art approaches.
Starting with the factorization-based methods, we can note that BPR-MF out-
performs FedeRank for T = 1, but it remains at about 67% and 88% of the
centralized algorithm for Amazon Digital Music and LibraryThing, respectively.
However, the realistic Federated setting is with T = X+/|U|. Here, FedeRank
consistently improves the recommendation performance with respect to BPR-
MF and FCF, over the three datasets. Actually, for Amazon Digital Music and
LibraryThing FedeRank improves accuracy metrics of about 50% and 25% with
respect to BPR-MF. The achievement can be explained as an advantage brought
by the increased local computation. It is worth noticing that this results partially
contradict Rendle et al.[34] since they hypothesize that traversing user-wise the
training triples would worsen the recommendation performance. The accuracy
improvements we observed are not visible in MovieLens 1M, where we witness re-
sults comparable or worse than BPR-MF, probably due to the overfitting caused
by the very high ratio between ratings and items. FedeRank with increased com-
putation still results robust with respect to the IC metric, since, in general, it
outperforms or remains comparable to FCF and BPR-MF.

4.2 Analysis of Positive Feedback Transmission Ratio

We have extensively analyzed the behavior of FedeRank when tuning π for send-
ing progressive fractions of positive feedback in [0.0, . . . , 1.0] with step 0.1. We
believe that the most important dimensions for this analysis are accuracy (Pre-
cision), and aggregate diversity (Item Coverage). Figure 1 reports the results for
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Fig. 1: F1 performance at different values of π in the range [0.1, 1]. Dark blue is
T = 1, light blue is T = X+/|U|.

the two experimented settings. Even here, Amazon Digital Music and Library-
Thing show similar trends. The accuracy of the recommendation progressively
increases reaching the maximum with fractions 0.8 and 0.5, respectively, for
T = 1, and with fractions 0.9 and 1.0 for T = X+/|U|. First, this suggests that,
at the beginning of the training, some positive feedback is needed for establishing
the value of an item. Notwithstanding, even with π = 0.1 (i.e., sharing just 10%
of private information), we witness a jump in recommendation accuracy (one
order of magnitude), reaching up to 92% of the best accuracy. We should also
observe another significant behavior. With a fraction of 0.0, we observe a high
value of IC, with poor recommendation accuracy. It suggests that the system
could not capture population preferences, and it behaves similarly to Random.
However, even with a small fraction of positive feedback like 0.1, we observe a
significant decrease in diversity metrics. The system learns which items are pop-
ular and starts suggesting them. Moreover, if we observe large fractions, we may
notice that diversity increases as we feed the system with more information. For
MovieLens 1M , it is worth noticing that FedeRank shows accuracy performance
extremely close to the best value by sharing only 10% of positive interactions.
This behavior may be due to several reasons. Firstly, MovieLens 1M is a rela-
tively dense dataset in the recommendation scenario (it has a sparsity of 0.955).
Secondly, it shows a very high user-item ratio [2] (i.e., 1.63) compared to Amazon
Digital Music (0.04), and LibraryThing (0.20), and it shows high values for the
average number of ratings per user (132.87), and ratings per item (216, 56). All
these clues suggest that the system learns how to rank items even without the
need for the totality of ratings. If we focus on diversity metrics, IC, and Gini,
we may notice that diversity is progressively increasing from fraction 0.1 to 1.0.
It suggests that the system recommends a small number of popular items with
a fraction of 0.1, while it provides more diversified recommendation lists consid-
ering larger portions of positive user feedback. At this stage of the analysis, we
can draw an interesting consideration: in general, the highest accuracy values
do not correspond to the fraction of 1.0. This observation connects to a broad
debate regarding the amount of information needed for a recommendation task.
Specifically, the experiments show that, initially, the recommender struggles to
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Fig. 2: Normalized number of item updates during the training: the 1,000 most
updated items for different values of π (from π = 0.0 in red to π = 1.0 in blue).
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Fig. 3: Normalized number of recommendations for each item (colored curves
from π = 0.0 in red to π = 1.0 in blue) vs. normalized amount of positive
feedback per item (black dashed curve). The 250 most popular items are shown.

suggest relevant items without positive feedback (fraction 0.0). However, with
a small injection of feedback, the system starts to work well. Nonetheless, in
Amazon Digital Music and LibraryThing , if we increase the fraction, we wit-
ness an increase concerning accuracy only until a certain value of π. Although
this consideration, we observe an increase in diversity metrics when we continue
to increase the value of π. Since it has a small or even detrimental impact on
accuracy, those items might be unpopular items erroneously suggested to users.

4.3 Study on FedeRank algorithmic bias

In this section, we study how incomplete transmission of user feedback affects
the popularity of items in the final recommendations and during the learning
process. It is essential to discover whether the exploitation of a Federated Learn-
ing approach influences the algorithmic bias, determining popular items to be
over-represented [5, 8]. To conduct this study, we have re-trained FedeRank with
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all the previously considered π. For each experiment, we analyzed the data flow
between the clients and the server. Afterward, we have extracted the number of
updates for each item. Figure 2 illustrates the occurrences for the 1,000 most
updated items. In the Figure, the curves denote the different values of π. Analo-
gously, we considered for each experiment the final top-10 recommendation list
of each user. Following the same strategy, we analyzed the occurrences of the
items in the recommendation. Then, we ordered items from the most to the least
recommended, and we plotted the occurrences of the first 250 in Figure 3. To
compare the different datasets, we have normalized the values considering the
overall dataset occurrences. Figure 2 shows that data disclosure — i.e., the value
of π — highly influences the information exchanged during the training process.
Additionally, the update frequency curve exhibits a constant behavior for all the
datasets, when π = 0.0. This trend suggests that items are randomly updated
without taking into account any information about item popularity. This behav-
ior explains the high IC entirely observed in Figure 1 for π = 0.0. Moreover, the
curve for π = 0.1 shows that the exchanged data is enough to provide the system
with information about item popularity. The curves suggest that the information
on item popularity is being injected into the system. By increasing the value of
π, the trend becomes more evident. Due to the original rating distribution, the
system initially exchanges more information about the very popular items. To
analyze the algorithmic bias, we can observe Figure 3. Remarkably, item pop-
ularity in recommendation lists does not vary as we may expect based on the
previous analysis. The setting π = 0.0 is an exception, as extensively explained
before. Since in Amazon Digital Music and LibraryThing the updates sent by
the clients are randomly selected between the negative items, FedeRank acts like
a Random recommender. Thus, the system cannot catch popularity information,
and, as the plots make clear, it struggles to make the right items popular. Fi-
nally, we can focus on the curves for π > 0. It is particularly noteworthy that
the different π curves behave similarly, and they propose the same proportion of
popular items. The curves’ trends suggest that the recommendation model com-
pletely absorbs the initial variation in exchanged item distribution, unveiling
another unknown aspect of factorization models.

5 Conclusion and Future Work

In this paper, we have tackled the problem of putting users in control of their pri-
vate data for a recommendation scenario. Witnessing the growing concern about
privacy, users might want to exploit their sensitive data and share only a small
fraction of their feedback. In such a context, classic CF approaches are no more
feasible. To overcome these problems, we have proposed FedeRank, a novel rec-
ommendation framework that respects the Federated Learning paradigm. With
FedeRank, private user feedback remains on user devices unless they decide to
share it. On the other hand, FedeRank ensures high-quality recommendations
despite the constrained setting. We have extensively studied the performance of
FedeRank by comparing it with other state-of-the-art methods. We have then
analyzed the impact of progressive deprivation of user feedback, and we studied
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the effects on the diversity of the recommendation results. Finally, we have inves-
tigated if the federated algorithm imposes an algorithmic bias to the generated
recommendation lists. The study paves the way for further research directions.
On the one hand, the results’ analysis suggests that centralized recommender
systems are not performing at their best. Indeed, feeding recommender systems
with all the available feedback, without any filtering, may lead to a performance
worsening. On the other hand, the competitive results of FedeRank suggest that
the Federated Learning-based algorithms show a recommendation quality that
makes them suitable to be adopted on a massive scale.
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