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ABSTRACT
Research on recommender systems algorithms, like other areas of
applied machine learning, is largely dominated by efforts to improve
the state-of-the-art, typically in terms of accuracy measures. Several
recent research works however indicate that the reported improve-
ments over the years sometimes “don’t add up”, and that methods
that were published several years ago often outperform the latest
models when evaluated independently. Different factors contribute
to this phenomenon, including that some researchers probably often
only fine-tune their own models but not the baselines.

In this paper, we report the outcomes of an in-depth, system-
atic, and reproducible comparison of ten collaborative filtering
algorithms—covering both traditional and neural models—on sev-
eral common performance measures on three datasets which are
frequently used for evaluation in the recent literature. Our results
show that there is no consistent winner across datasets and met-
rics for the examined top-n recommendation task. Moreover, we
find that for none of the accuracy measurements any of the con-
sidered neural models led to the best performance. Regarding the
performance ranking of algorithms across the measurements, we
found that linear models, nearest-neighbor methods, and traditional
matrix factorization consistently perform well for the evaluated
modest-sized, but commonly-used datasets. Our work shall there-
fore serve as a guideline for researchers regarding existing baselines
to consider in future performance comparisons. Moreover, by pro-
viding a set of fine-tuned baseline models for different datasets, we
hope that our work helps to establish a common understanding of
the state-of-the-art for top-n recommendation tasks.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
Recommender systems are nowadays widely used in online appli-
cations, where they help users find relevant information in situa-
tions of information overload. Given the high practical relevance
of such systems, research in this field is flourishing, particularly in
the underlying machine learning (ML) algorithms used to create
personalized item suggestions. Correspondingly, the predominant
methodology is offline experimentation where the prediction or
ranking accuracy of different ML models is compared. The common
goal in such research works is to advance the state-of-the-art, and
evidence is then provided by reporting improvements over existing
models that were obtained in those experiments.

Unfortunately, a number of recent research works published in
the area of recommender systems and other related areas of applied
ML research, e.g., information retrieval, indicate that some of these
improvements that have been reported over the years “don’t add up”
[4]. Ferrari Dacrema et al. [12], for example, benchmark a variety
of recent top-n recommendation models against earlier and often
simpler models. Through their studies, they found that much of the
reported progress only seems to be “virtual”, as the latest models are
almost always outperformed by existing methods (see also Rendle
et al. [29] for a related analysis). Various reasons may contribute
to this surprising phenomenon, including the choice of (too weak)
baselines [19, 22] or the lack of a proper tuning of the baselines.
Moreover, in such independent evaluations, i.e., that are not done
by authors of the compared methods, it often turns out that there
is no clear winner across datasets and accuracy measures. Thus,
it remains unclear what represents the actual state-of-the-art in
this field, given that the ranking of algorithms seems to depend
on the particular experimental configuration in terms of baselines,
accuracy measures, or datasets.

With this work, our goal is to provide insights regarding what
represents the state-of-the-art for top-n recommendation tasks, at
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least for those experimental settings that are common in the recent
literature. Like in Ferrari Dacrema et al. [12], we consider a broad
range of collaborative filtering algorithms, which includes both
older methods based on nearest-neighbors, different matrix factor-
ization approaches, linear models, as well as more recent techniques
based on deep learning. Differently from earlier comparisons like
Ferrari Dacrema et al. [12], however, we benchmark all algorithms
under identical experimental conditions, i.e., with the same datasets
and using the same evaluation protocol, after systematically tuning
the hyperparameters of all models to reach their best performance.1

The outcomes of our experiments show that in none of the con-
sidered cases one of the two recent neural methods was the best-
performing algorithm. Moreover, the ranking of the algorithms, as
expected from the literature, varies across datasets and evaluation
measures. With some surprise, we found that linear models, nearest
neighbors, and traditional matrix factorization and are dominat-
ing the leaderboard across datasets and performance metrics. One
insight from our research therefore is that these top-ranking non-
neural methods from our analysis should be considered as baselines
in future research on recommendation algorithms.

It is worth noticing that the datasets used in our experiments
were chosen based on the predominant practice in the current aca-
demic literature. In our view, these datasets are however relatively
small and different results might be obtained for larger datasets.
Such an analysis is however not the focus of our present work,
which aims to provide insights on the state-of-the-art in commonly
used evaluation setups. Nonetheless, with this work we provide
a set of fine-tuned models for these common datasets, thereby re-
ducing the effort for other researchers to tune these baselines in
their own experiments. In the future, we plan to publish fine-tuned
models also for larger datasets, thereby continuously growing our
understanding of the state-of-the-art in this area.

The paper is organized as follows. Next, in Section 2, we describe
the details of our methodology and the datasets, algorithms, and
metrics that we used in our experiments. Section 3 discusses the
outcomes of our experiments, both in terms of accuracy and beyond-
accuracy metrics. Section 4 finally discusses and summarizes the
insights of our research and provides an outlook on future works.

2 METHODOLOGY
The goal of our study was to evaluate different algorithms under
very common experimental settings in the current literature in
terms of datasets, evaluation metrics, and protocols. The choice of
experimental settings reported in this paper were guided by the
following considerations. First, we took inspiration from the work
by Sun et al. [36], who systematically evaluated various algorithms
under a large set of experimental configurations. Second, to select
specific experimental configurations for the purpose of our study,
we scanned the current literature for the rather common settings.
This also led to the inclusion of a number of recent models as well as
simpler methods that have proven effective in recent works, where
some of them had not been considered in Sun et al..

Notably, our present work generally differs from Sun et al. in
terms of the main goal. In Sun et al., one main purpose was to assess

1We share all code and data used to run the experiments publicly to ensure
reproducibility of our findings, see our GitHub repository.

the impact of various aspects of the experimental procedure, e.g.,
negative sampling, split-ratio, or dataset preprocessing, on accuracy.
In contrast, our work mainly focuses on providing a performance
comparison of algorithms of different families for very common
experimental configurations. Thus, we hope that our work helps
establish an agreed-upon and continuously updated benchmark
setting that can be used for researchers to test their new models
against existing ones in a predefined setting.2

2.1 Datasets and Preprocessing
We report the results we obtained for three datasets that are fre-
quently used in the recent literature: MovieLens-1M, Amazon Digital
Music, and Epinions.

• MovieLens-1M (ML1M): The MovieLens datasets have been
widely used in the recommender systems literature for many
years [13] and different versions are available online3. The
ML1M dataset used in our studies was collected between
the years 2000 and 2003 on the MovieLens website and con-
tains ratings for movies on a 1-5 scale. A particularity of the
dataset is that it is rather dense, and for each user at least
20 ratings are available.

• Amazon Digital Music (AMZm): This dataset is part of a larger
public collection of datasets4 that was created initially in the
context of image-based recommendation [25]. The Digital
Music dataset contains reviews crawled from the Amazon
website as well as item ratings on a 1-5 scale.

• Epinions: This dataset was crawled in 2003 from the now
defunct consumer review site epinions.com5. A peculiar
characteristic of the Epinions website was that users were
paid according to how much a review was found useful. For
this reason, Epinions has been widely adopted for research
on trust in recommender systems. The Epinions collection
consists of two datasets: one contains item ratings (1-5 stars),
while the other one collects (unary) trust statements among
users. We point out that, in our study, instead of setting a
custom (and in some ways arbitrary) threshold to binarize
the rating dataset, we use the second dataset and consider the
“trustable” users as the objective of the recommendation task.

It is noteworthy that, for the purpose of our research, all three
datasets are publicly available and they were selected also in order
to cover a diverse set of application domains of recommender sys-
tems. Other datasets, e.g., from the Netflix Prize, were also popular
for some time, but they are nowadays only rarely used, e.g., Liang
et al. [21], and they are no longer officially accessible. Moreover,
differently from the Netflix Prize competition, rating prediction is
also no longer considered the most important task in recommen-
dation. Instead, the common goal nowadays is to compute item
rankings. In addition, recommending based on implicit feedback
signals is dominating the landscape, given the typical lack of ex-
plicit rating information in many applications. Therefore, datasets
that originally contain item ratings are commonly converted into
2We note that some of the choices regarding the experimental settings could have been
made differently as well, e.g., with respect to cutoff thresholds. We however do not expect
largely different results when changing some of these minor experiment parameters.
3https://grouplens.org/datasets/movielens/
4https://jmcauley.ucsd.edu/data/amazon/
5http://www.trustlet.org/epinions.html
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unary (like) signals. We follow this practice also in our evaluation
and convert the rating datasets of MovieLens and Amazon Digital
Music to unary datasets by considering every rating above 3 as a
positive signal.6 For the Epinions dataset, such a conversion is not
needed as the data is already given in unary form.

Real-world datasets are often very sparse. Therefore, another
common pre-processing step in the literature is to create a more
dense version of the datasets to ensure that there is a minimum
number of interactions per user and item in the dataset, e.g., to allow
for effective personalization. We created different p-cores for each
dataset due to their diverging characteristics. In a p-core dataset,
we ensure that there are at least p interactions for each item and at
least p interactions for each user. For our experiments, the creation
of these p-core datasets was done in an iterative procedure, where
the described constraints are applied until no more changes to the
dataset can be observed. Different values for p were used for the
given datasets, depending on their size and density. For Movielens
1M and Amazon Digital Music we used the most common value
of p (p=10 for ML1M, p=5 for AMZm, see Sun et al. [36]), while for
Epinions we choose a p-core value to reach a comparable density of
the final matrix with respect to the other two datasets. Specifically,
in this latter case, only a 2-core subset was computed due to the
dataset’s high sparsity. The resulting dataset characteristics are
shown in Table 1. We observe that removing negative ratings and
creating p-cores led to a considerable reduction of the dataset size
for ML1M , and that it results in an even more drastic reduction for
the AMZm dataset.

Interestingly, today’s commonly used datasets are often not only
almost twenty years old, but also rather small, compared, for ex-
ample, to the Netflix Prize dataset with its 100 million ratings. We
assume that the computational complexity of some modern mod-
els prevents authors to explore their proposals on larger datasets.
Among the larger public datasets, the 20M version of the MovieLens
datasets is sometimes used in the literature [21]. The 1M version
is however used for evaluations more frequently [36], and this is
the main reason why we consider it in this study. Moreover, we
observed that systematically tuning the hyperparameters for all
datasets and models can be computationally challenging for some
models already for the datasets of modest size described in Table 1.

2.2 Algorithms
Given the goals described above, we considered algorithms from
different families in our analysis. All non-neural methods, except
Bayesian Personalized Ranking (BPRMF) [28], were also considered
as baselines in the recent analysis of recommendation algorithms
presented in Ferrari Dacrema et al. [12]. Specifically, we considered
the following techniques in our evaluation:

• Non-personalized baseline: Popularity-based recommenda-
tion (MostPop).

• Neighborhood-based and simple graph-based models: UserKNN
[32], ItemKNN [33], RP3β [27].

• Linear models: SLIM [26], EASER [34].
6Alternative approaches exist in the literature for this conversion, e.g., considering
every rating as positive in case it is higher than the user’s average. Often, we also see
that all ratings are converted to positive signals. This is however questionable as (i)
a low rating, e.g., one star, is not a positive signal and (ii) it changes the problem into
predicting who will rate what.

• Matrix factorization models: BPRMF [28], MF2020 [29], iALS
[15].

• Neural models: NeuMF [14], MultiVAE [21].
Table 2 provides more details for the compared algorithms and

explains why we considered them for our study.

2.3 Evaluation Settings and Metrics
In this section, we provide details about the applied evaluation
protocol, the evaluation metrics, and the hyperparameter tuning
process.

Evaluation Protocol. We used a common repeated 80-20 hold-out
splitting procedure in our experiments [29]. Correspondingly, each
dataset is randomly split to sample chunks containing around 20%
of the data. In each evaluation round, 20% of the data are used for
testing and the remaining 80% are for training. Each experiment
is repeated five times. Later in Section 3, we report the mean of the
observed values of the cross-validation runs.

We note that in the recent literature often only the results of one
single training-test split are reported. While this data-splitting is
typically done randomly in previous studies, we argue that cross-
validation usually leads to more reliable results.

Metrics. We collect a rich variety of accuracy metrics as well as
a number of “beyond-accuracy” measures that are commonly used
in the literature to assess additional quality aspects of recommen-
dation lists.

• In terms of accuracy metrics, we measure Normalized Dis-
counted Cumulative Gain (nDCG), Mean Reciprocal Rank
(MRR), Precision, Recall, Mean Average Precision (MAP), and
F1 at common list lengths of 10, and 20. For F1, note that we
compute it on a per-user basis and not simply as a harmonic
mean of the averages of Precision and Recall across users.8
Thus, we have both metrics that take the position of the cor-
rect items into account and metrics that are agnostic of this
aspect. Note here that we do not collect “sampled” metrics in
our evaluation. In a sampled metrics approach, one test item
is ranked within an often small list of “negative samples”.
Such a procedure, while widely used, was recently found to
be unreliable [18]. Note that historically the majority of the
literature considered error metrics (RMSE, MAE) for evalu-
ation purposes. However, “such classical error criteria do not
really measure top-N performance” [9]. Consequently, several
ranking metrics have been proposed in the last two decades
and were adopted to evaluate top-n recommendation tasks.
The present work shows the evaluation results for the most
commonly used ranking metrics.

• Considering beyond-accuracy metrics, we measured a broader
range of metrics regarding popularity bias, novelty, fairness,
and item coverage and concentration. The details of the con-
sidered metrics are provided in Table 3. We note that also
the novelty and fairness metrics used here are based on pop-
ularity distributions of items. Specifically, for the PRSP and

7https://sifter.org/simon/journal/20061211.html
8With this user-wise calculation of F1, the overall average of F1 values is not bounded
to lie between the overall averages of Precision and Recall; see the online material
for additional explanations (https://github.com/sisinflab/Top-N-Recommendation-
Algorithms-A-Quest-for-the-State-of-the-Art)
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Table 1: Dataset characteristics before and after pre-processing

Dataset p-core #interactions #users #items #interactions #users #items

before pre-processing after pre-processing
Movielens 1M 10-core 1,000,209 6,040 3,706 571,531 5,949 2,810
Amazon Digital Music 5-core 1,584,082 840,372 456,992 145,523 14,354 10,027
Epinions 2-core 300,548 8,514 8,510† 300,475 8,485 8,463†

†: The Epinions dataset focuses on “trustable” user recommendation. Note that not all users are trustable candidates according
to the historical transactions, which is why the number of users as recommendable items is lower than the number of users.

the PREO metrics, we consider the 20% most popular items
as the “short head” and the rest as long-tail items.

• Running times: Modern machine learning models can be com-
putationally expensive. Therefore, we measured the compu-
tation times required for each algorithm for training and
testing.

Hyperparameter tuning. We performed extensive hyperparam-
eter tuning for all algorithms in our comparison, which is essen-
tial to understand what represents the state-of-the-art. Previous
research [8] has identified that the lack of proper tuning of base-
line algorithms may easily lead to a certain stagnation in the field,
where new models are carefully tuned, whereas only limited effort
sometimes goes into tuning existing baseline models.

For hyperparameter tuning, we relied on the HyperOpt library9

and used Tree of Parzen Estimators (TPE) as an algorithm to find the
best hyperparameters [5]. We determined suitable hyperparameter
ranges for each algorithm from the literature, using, e.g., ranges
that were earlier used in Ferrari Dacrema et al. [12] and other works.
Depending on the number and ranges of the hyperparameters of
each algorithms, we explored between 20 and 50 hyperparameter
combinations for each model. Hyperparameter tuning was con-
ducted on a validation set for each dataset, and nDCG@10 was
used as an optimization target. As suggested by Anelli et al. [3], the
nDCG metric represents a reasonable choice for hyperparameter
tuning. All hyperparameter ranges and the optimal values for each
dataset and algorithm are reported in the provided online material
for reproducibility.

3 RESULTS
3.1 Accuracy Results
The results of the accuracy measurements for commonly used cut-
off thresholds of 10 and 20 are shown in Table 4 (MovieLens-1M),
Table 5 (Amazon Digital Music), and Table 6 (Epinions). The results
for the cutoff threshold of 50 are provided in the online material. We
mark the best-performing method for each metric in bold font; the
second-best result is underlined. The following main observations
can be made.

• Top-performing methods: Considering nDCG as our main per-
formance measure—most other metrics are correlated except
for Recall in some situations—we find that the top three po-
sitions across all metrics and cutoff lengths are taken by five

9http://hyperopt.github.io/hyperopt/

algorithms: EASER , MF2020, SLIM, RP3β , and, a bit surpris-
ingly, UserKNN. Differences across the datasets exist, but
the ranking at least at top places is quite consistent across
the datasets. For ML1M , EASER , MF2020, and SLIM are the
best methods, whereas RP3β , EASER , and SLIM are best for
AMZm. These methods also work well in Epinions. For the
Epinions dataset, however, UserKNN works even slightly
better than EASER . Generally, the performance of the five
top-performing methods is quite consistent, with EASER al-
ways taking a top rank. The MF2020 technique, in contrast,
mainly seems to work particularly well for the dense ML1M
dataset. We note here that UserKNN for the given datasets
was always favorable over ItemKNN. It is noticeable that
this evidence differs from some prior literature. In 2004 [10],
it was suggested that item-based algorithms provide com-
parable or better quality recommendations than traditional
user-neighborhood-based recommender systems. In 2011, re-
searchers reported [26] that in their experiments item-based
schemes outperform user-based ones. Similar observations
were made in 2011 by Ekstrand et al. [11] for rating predic-
tion tasks. In 2016, Christakopoulou and Karypis [7] gener-
ally assumed that the item-based methods had been shown
to outperform the user-based schemes for the top-n recom-
mendation task. In the analysis from 2021 [12], however,
a general dominance of ItemKNN over UserKNN was not
reported. There were cases where ItemKNN was better, but
in the majority of the reported experiments UserKNN was
favorable, which suggests that the ranking of the methods
may depend on dataset characteristics and specifics of the
evaluation protocol.

• Performance of neural methods: The two neural methods con-
sidered here, NeuMF and MultiVAE, only led to medium per-
formance on these datasets. While MultiVAE performed very
well in an earlier comparison with traditional methods [12],
we may assume that the modest size of the datasets might
limit the power of this method in our experiment to a certain
extent, see also the report on the use of deep learning meth-
ods at Netflix [35] or the discussions in Jannach et al. [17].

• Fine-tuning opportunities: The iALS and BPRMF methods
often led to medium to modest performance in this com-
parison. Recent work indicates that further enhancing and
fine-tuning methods like iALS for specific datasets may lead
to additional performance improvements [31]. Note, how-
ever, that the goal of our work was to assess the performance
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Table 2: Overview of compared algorithms

Family Algorithm Description
Non-personalized
Baselines

MostPop Recommends the most popular items to each user, where popularity
is defined by the number of observed interactions in the training data.

Random Creates random recommendations for users. Mainly useful to provide
a reference point for beyond-accuracy measures (see Section 2.3).

Neighbors and Graphs
UserKNN A user-based nearest neighbor scheme proposed by Resnick et al. [32]

in 1994 in an early paper on the GroupLens system. In general, we
include early nearest-neighbor techniques here because (i) they let us
gauge the progress on small datasets over time and (ii) they proved
surprisingly effective in recent research [12].

ItemKNN Item-based nearest-neighbor algorithms were discussed in 2001 [33]
and later successfully applied in industry around 2003 [24].

RP3β This method (RP3β) is a simple graph-based method [27] from 2017,
which is conceptually similar to the ItemKNN method and can, despite
its simplicity, lead to good performance [12].

Linear Models SLIM This regression-based method was proposed for top-n recommendation
tasks in 2011 [26]. Like in a recent analysis [12], we use the ElasticNet
version of the method [20], as it often leads to competitive results.

EASER Another linear model, proposed in 2019 [34], which works like a
shallow autoencoder. We include this method because it often leads
to good results despite its simplicity.

Matrix Factorization
MF2020 Matrix factorization methods were initially explored using Singular

Value Decomposition in 1998 [6]. Later, in particular during and after
the Netflix Prize, various machine learning approaches were proposed
to learn latent factors7. A recent analysis shows that these methods from
the late 2000s are still competitive. In our study, we use a very recent
MF model from Rendle et al. [29] proposed in 2020, dubbed MF2020.

iALS This method from 2008 uses an Alternating Least Squares approach
and is particularly designed to learn factor models for implicit feedback
datasets [15]. The method is widely used as a non-neural baseline in
the literature.

BPRMF This method from 2009 was also designed for implicit feedback and
introduces a novel optimization criterion. We use the MF variant in our
experiments, which is also frequently used as a non-neural baseline
in the literature [28].

Neural Models NeuMF NeuMF was proposed in 2017 [14] and is an early and influential
deep learning model used for recommendation. It generalizes matrix
factorization and replaces the inner product with a neural architecture.
The method is widely used as a neural baseline in the recent literature.

MultiVAE This model was designed for implicit feedback data, published in
2018, and is based on variational autoencoders [21]. According to
the analysis in Ferrari Dacrema et al. [12], this method outperformed
existing non-neural baselines in an independent evaluation.

of different algorithms under equal opportunities, i.e., by us-
ing a systematic but generic hyperparameter optimization
procedure. Fine-tuning individual algorithms, e.g., by explor-
ing rather uncommon ranges for the size of the latent factors,
is of course possible, but not the focus of our work, which
is about establishing a set of baselines (state-of-the-art) to
consider in future works. Similar considerations apply for
the neural methods, which may also be further tuned for
individual datasets.

We note that the differences between the top-performing meth-
ods are sometimes small, often between one and a few percent. In
papers that propose new models, we would therefore commonly
expect statistical significance tests. For the evaluations reported
in our study, we omit such tests as we have no prior hypotheses
regarding which model would “win”. Instead, the goal of our work
is to provide guidance for researchers about which methods they
might want to consider as baselines for comparison. We note that in
many published papers no exact details are provided about how the
significance tests are applied and prerequisites were validated. Also,
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Table 3: Overview of beyond-accuracy metrics
Aspect Metric Description

Coverage
and Concentration

IC Item Coverage (IC) measures how many items ever appear in the top-n
recommendations of users.

Gini A measure of statistical dispersion, used to express the inequality of
a distribution. A higher Gini index value (Gini ∈ [0, ... ,1]) indicates
a stronger concentration of the recommendations, e.g., on popular
items [16]. To ease the interpretation of the results and associate
higher values with better results in terms of non-concentrated
recommendations, in Tables 9, 10, and 11 we report the value (1−Gini).

Novelty EFD Expected Free Discovery: A novelty measure proposed in [38] based
on the inverse collection frequency. Like EPC, this measure expresses
the ability of an algorithm to recommend relevant long-tail items.

EPC Expected Popularity Complement: This metric expresses the expected
“number of seen items not previously seen” [38].

Fairness
PREO The Popularity-based Ranking-based Equal Opportunity (REO)

recommendation metric for assessing bias (fairness) was proposed in
[39]. Lower values mean less biased recommendations.

PRSP Popularity-based Ranking-based Statistical Parity [39], to assess
potential bias and thus fairness of the recommendations. Again, lower
values mean less biased recommendations.

Popularity Bias APLT Average Popularity of Long-Tail Items: Measures the average popularity
of long tail items in the top-n recommendations of users [1].

ARP Average Rating-based Popularity: This metric computes the popularity
of the items in a recommendation list based on the number of
interactions of each item in the training data [16].

ACLT Average Coverage of Long-Tail Items: Measures how many items from
the long tail are covered in the top-n recommendations of users [1].

Table 4: Accuracy Results for MovieLens-1M. The tables are sorted by nDCG in descending order. The notation @N indicates
that the metrics are computed considering recommendation lists of N elements.
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in their experiments item-based schemes outperform user-based ones. Similar observations were made in 2011 by
Ekstrand et al. [10] for rating prediction tasks. In 2016, Christakopoulou and Karypis [7] generally assumed that the
item-based methods had been shown to outperform the user-based schemes for the top-n recommendation task. In
the analysis from 2021 [11], however, a general dominance of ItemKNN over UserKNN was not reported. There were
caseswhere ItemKNNwasbetter, but in themajorityof the reportedexperimentsUserKNNwas favorable,whichsug-
gests that the ranking of the methods may depend on dataset characteristics and specifics of the evaluation protocol.

Table 4. Accuracy Results for MovieLens-1M. The tables are sorted by nDCG in descending order. The notation @N indicates that
the metrics are computed considering recommendation lists of N elements.

Algorithm Top@10
nDCG MAP MRR Pre Rec F1

EASE𝑅 0.336 0.335 0.583 0.274 0.194 0.190
SLIM 0.335 0.337 0.580 0.275 0.189 0.188
MF2020 0.329 0.327 0.563 0.272 0.190 0.192
UserKNN 0.315 0.314 0.554 0.256 0.183 0.179
RP3𝛽 0.315 0.313 0.556 0.256 0.184 0.179
iALS 0.306 0.304 0.542 0.252 0.179 0.176
MultiVAE 0.294 0.284 0.514 0.243 0.183 0.175
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iALS 0.309 0.263 0.547 0.202 0.272 0.194
MultiVAE 0.304 0.250 0.519 0.199 0.281 0.195
ItemKNN 0.289 0.252 0.523 0.192 0.247 0.180
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Algorithm Top@10
nDCG MAP MRR Pre Rec F1

RP3𝛽 0.085 0.040 0.115 0.023 0.104 0.036
EASE𝑅 0.083 0.038 0.108 0.023 0.106 0.035
SLIM 0.081 0.037 0.106 0.022 0.104 0.035
UserKNN 0.081 0.037 0.105 0.022 0.104 0.035
iALS 0.073 0.032 0.093 0.021 0.099 0.033
ItemKNN 0.071 0.033 0.095 0.018 0.085 0.029
MF2020 0.057 0.024 0.067 0.017 0.083 0.028
NeuMF 0.056 0.024 0.068 0.015 0.074 0.025
MultiVAE 0.054 0.023 0.062 0.016 0.077 0.025
BPRMF 0.020 0.008 0.023 0.007 0.031 0.010
MostPop 0.012 0.005 0.016 0.004 0.016 0.006
Random 0.000 0.000 0.000 0.000 0.001 0.000

Algorithm Top@20
nDCG MAP MRR Pre Rec F1

RP3𝛽 0.094 0.029 0.118 0.015 0.132 0.026
EASE𝑅 0.092 0.028 0.111 0.015 0.136 0.026
SLIM 0.090 0.027 0.109 0.014 0.134 0.025
UserKNN 0.090 0.027 0.108 0.014 0.133 0.025
iALS 0.084 0.025 0.096 0.014 0.132 0.025
ItemKNN 0.078 0.023 0.098 0.012 0.108 0.021
MF2020 0.067 0.019 0.071 0.012 0.116 0.022
NeuMF 0.063 0.018 0.071 0.010 0.096 0.019
MultiVAE 0.062 0.017 0.066 0.011 0.105 0.019
BPRMF 0.025 0.007 0.025 0.005 0.047 0.009
MostPop 0.014 0.004 0.017 0.003 0.025 0.005
Random 0.001 0.000 0.001 0.000 0.001 0.000

Table 6. Accuracy Results for Epinions. The tables are sorted by nDCG in descending order.

Algorithm Top@10
nDCG MAP MRR Pre Rec F1

UserKNN 0.164 0.131 0.266 0.157 0.102 0.100
EASE𝑅 0.164 0.132 0.268 0.154 0.104 0.100
RP3𝛽 0.163 0.129 0.260 0.159 0.102 0.100
SLIM 0.156 0.126 0.254 0.148 0.101 0.096
MultiVAE 0.149 0.116 0.240 0.148 0.094 0.094
ItemKNN 0.138 0.111 0.224 0.133 0.090 0.087
MF2020 0.125 0.104 0.219 0.114 0.084 0.079
NeuMF 0.118 0.098 0.206 0.108 0.080 0.075
BPRMF 0.113 0.093 0.200 0.106 0.076 0.071
iALS 0.110 0.091 0.192 0.101 0.074 0.084
MostPop 0.045 0.037 0.093 0.036 0.029 0.025
Random 0.001 0.001 0.003 0.001 0.001 0.001

Algorithm Top@20
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UserKNN 0.178 0.108 0.272 0.076 0.219 0.093
EASE𝑅 0.177 0.110 0.274 0.078 0.216 0.094
RP3𝛽 0.176 0.107 0.266 0.075 0.218 0.092
Slim 0.170 0.106 0.260 0.076 0.210 0.091
MultiVAE 0.165 0.099 0.247 0.072 0.212 0.089
ItemKNN 0.151 0.094 0.230 0.068 0.190 0.084
MF2020 0.138 0.088 0.225 0.065 0.170 0.079
NeuMF 0.131 0.084 0.212 0.063 0.162 0.075
BPRMF 0.126 0.079 0.207 0.060 0.160 0.072
iALS 0.121 0.077 0.198 0.057 0.149 0.079
MostPop 0.052 0.032 0.100 0.025 0.061 0.029
Random 0.002 0.001 0.003 0.001 0.002 0.001

• Performance of neural methods: The two neural methods considered here, NeuMF and MultiVAE, only led to medium
performance on these datasets. While MultiVAE performed very well in an earlier comparison with traditional
methods [11], we may assume that the modest size of the datasets might limit the power of this method in our

8

in case of per-user comparisons of means, significance at common
α-levels may be easy to achieve due to the large sample sizes [23].

Comparing our algorithm ranking with earlier works [12, 36],
we find both commonalities and differences. A general common-
ality of these studies is that more traditional methods, including
linear models, matrix factorization, or nearest neighbors frequently
take the top positions of the rankings. For example, the innovative
combination of Factorization Machines with BPR loss worked par-
ticularly well in [36]. Also SLIM and MF were in top positions for
some datasets. Differently from our findings, NeuMF more often
worked very well for some of the datasets examined in Sun et al.
[36]. A competitive performance of NeuMF was also observed in Fer-
rari Dacrema et al. [12], where it was, however, usually slightly

outperformed by various non-neural methods. These differences
may be attributed to different causes, including specifics of data-
preprocessing and the evaluation procedures10. Differently from
many earlier works, we apply cross-validation and compute p-cores
iteratively instead of only filtering “cold” users and items once.
Moreover, for some algorithms we explore a larger number of hyper-
parameter optimization trials than was done in some earlier works.

Finally, to obtain an overall picture of our accuracy results, we ap-
plied a Borda count ranked voting scheme to aggregate the outcomes
of our experiments. To that purpose, we consider each observed
ranking for each dataset and metric as a vote. When applying the

10In the original paper proposing NeuMF, the authors for example used a leave-one-out
procedure where only the last item of each user was retained in the test set [14].
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in their experiments item-based schemes outperform user-based ones. Similar observations were made in 2011 by
Ekstrand et al. [10] for rating prediction tasks. In 2016, Christakopoulou and Karypis [7] generally assumed that the
item-based methods had been shown to outperform the user-based schemes for the top-n recommendation task. In
the analysis from 2021 [11], however, a general dominance of ItemKNN over UserKNN was not reported. There were
caseswhere ItemKNNwasbetter, but in themajorityof the reportedexperimentsUserKNNwas favorable,whichsug-
gests that the ranking of the methods may depend on dataset characteristics and specifics of the evaluation protocol.

Table 4. Accuracy Results for MovieLens-1M. The tables are sorted by nDCG in descending order. The notation @N indicates that
the metrics are computed considering recommendation lists of N elements.

Algorithm Top@10
nDCG MAP MRR Pre Rec F1
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RP3𝛽 0.315 0.313 0.556 0.256 0.184 0.179
iALS 0.306 0.304 0.542 0.252 0.179 0.176
MultiVAE 0.294 0.284 0.514 0.243 0.183 0.175
ItemKNN 0.292 0.293 0.518 0.242 0.163 0.163
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UserKNN 0.314 0.268 0.559 0.201 0.273 0.192
iALS 0.309 0.263 0.547 0.202 0.272 0.194
MultiVAE 0.304 0.250 0.519 0.199 0.281 0.195
ItemKNN 0.289 0.252 0.523 0.192 0.247 0.180
BPRMF 0.280 0.235 0.508 0.181 0.253 0.176
NeuMF 0.280 0.240 0.500 0.188 0.245 0.195
MostPop 0.161 0.141 0.326 0.114 0.137 0.103
Random 0.009 0.007 0.024 0.007 0.007 0.006
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UserKNN 0.090 0.027 0.108 0.014 0.133 0.025
iALS 0.084 0.025 0.096 0.014 0.132 0.025
ItemKNN 0.078 0.023 0.098 0.012 0.108 0.021
MF2020 0.067 0.019 0.071 0.012 0.116 0.022
NeuMF 0.063 0.018 0.071 0.010 0.096 0.019
MultiVAE 0.062 0.017 0.066 0.011 0.105 0.019
BPRMF 0.025 0.007 0.025 0.005 0.047 0.009
MostPop 0.014 0.004 0.017 0.003 0.025 0.005
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Table 6. Accuracy Results for Epinions. The tables are sorted by nDCG in descending order.
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BPRMF 0.113 0.093 0.200 0.106 0.076 0.071
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MostPop 0.052 0.032 0.100 0.025 0.061 0.029
Random 0.002 0.001 0.003 0.001 0.002 0.001

• Performance of neural methods: The two neural methods considered here, NeuMF and MultiVAE, only led to medium
performance on these datasets. While MultiVAE performed very well in an earlier comparison with traditional
methods [11], we may assume that the modest size of the datasets might limit the power of this method in our
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original Borda count scheme, each candidate (i.e., algorithm) re-
ceives more points when it is placed higher in the ranking. In our
lists of 12 candidates, the first candidate receives 11 points and
the last-ranked candidate 0 points. Applying this scheme across all
accuracy measures at list length 10 leads to the ranking shown in
Table 7a.11

We emphasize that such a rank-based aggregation should be
interpreted with great care as it might, for example, favor methods
that work particularly well on a set of correlated metrics. In agree-
ment with the analysis presented by Valcarce et al. [37], we observed
high correlation between ranking metrics and for the same metric
using different cutoffs. For example, in that work, when computing
the correlation between cutoffs ranging from 5 to 100, the lowest one
was 0.9, which still represents a very strong correlation. Because of
this, we only considered one threshold for the measurement shown
in Table 7a. Another known limitation of the Borda count scheme
is that the ranking might change if a candidate is removed from the
lists. Despite these limitations, we believe that the Borda count may
represent a helpful summarization approach for the experiments in
this paper. More fine-grained applications of the Borda count are
possible as well to account for such correlations. In Table 7b and
Table 7c, we report the Borda count rankings when considering
only one specific measure, nDCG@10 and Recall@10, respectively.
We select Recall as an example here, because all other metrics are
usually more correlated with nDCG than Recall. The analysis in

11The maximum possible value for a method in Table 7a is 198, as we rank 12 algorithms
according to 6 metrics for 3 datasets; 198=(12-1) × 1 × 3. For Table 7b and Table 7c, the
maximum is correspondingly 33. Although Tables 4 to 6 report rounded values for the
sake of clarity, rankings are assessed considering exact metric values.

Table 7c actually shows that RP3β and SLIM work particularly well
for Recall and are ranked higher than UserKNN for this metric.

3.2 Beyond-Accuracy Results
Table 9 shows the beyond-accuracy metrics results for the Movie-
Lens dataset for the top-10 and top-20 recommendations12. The
rows in the table are again sorted by accuracy (nDCG). We highlight
the best values for each metric, not considering the Random and
MostPop baselines, which only serve as reference points. Recom-
mending random items will, for example, lead to high item coverage,
but not to many relevant item suggestions.

In our analysis we found that some of our beyond-accuracy can
be highly correlated, which is to some extent expected as many
of them are based on item popularity characteristics, as discussed
above. Table 8 shows the outcomes of an analysis of metric correla-
tions. In this table, we report in how many cases (datasets) a metric
is correlated with another one with a Pearson product-moment
correlation coefficient (PPMCC) higher than 0.9 or lower than -0.9.
We can observe that both the ACLT and the PRSP metrics are consis-
tently correlated with the APLT metric. For the sake of conciseness,
we therefore only report the APLT metric here and omit ACLT and
PRSP from the tables. All detailed results also for these metrics can
be found in the online material.

Generally, we observe that the ranking of the algorithms is not en-
tirely consistent across the datasets. Here, we summarize a number
of patterns that we observed, having in mind that beyond-accuracy
measures are only of secondary interest in this study.

12Detailed results for other datasets and cutoff thresholds can be found in the online
material.
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Table 7. Algorithm ranking based on Borda count at cuto� length 10.

Rank Algorithm Count
1 EASE' 185
2 RP3V 169
3 SLIM 160
4 UserKNN 154
5 MF2020 115
6 ItemKNN 99
7 MultiVAE 92
8 iALS 90
9 NeuMF 61
10 BPRMF 45
11 MostPop 18
12 Random 0

(a) Overall

Rank Algorithm Count
1 EASE' 31
2 UserKNN 27
3 RP3beta 27
4 SLIM 27
5 MF2020 19
6 ItemKNN 16
7 MultiVAE 15
8 iALS 13
9 NeuMF 12
10 BPRMF 7
11 MostPop 3
12 Random 0

(b) nDCG

Rank Algorithm Count
1 EASE' 31
2 RP3V 29
3 SLIM 26
4 UserKNN 25
5 MF2020 20
6 MultiVAE 17
7 ItemKNN 15
8 iALS 14
9 NeuMF 9
10 BPRMF 9
11 MostPop 3
12 Random 0

(c) Recall

shown in Table 7a. Another known limitation of the Borda count scheme is that the rankingmight change if a candidate is
removed from the lists. Despite these limitations, we believe that the Borda count may represent a helpful summarization
approach for the experiments in this paper. More �ne-grained applications of the Borda count are possible as well to
account for such correlations. In Table 7b and Table 7c, we report the Borda count rankings when considering only one
speci�c measure, nDCG@10 and Recall@10, respectively. We select Recall as an example here, because all other metrics
are usually more correlated with nDCG than Recall. The analysis in Table 7c actually shows that RP3V and SLIMwork
particularly well for Recall and are ranked higher than UserKNN for this metric.

3.2 Beyond-Accuracy Results

Table 9 shows the beyond-accuracymetrics results for theMovieLens dataset for the top-10 and top-20 recommendations12.
The rows in the table are again sorted by accuracy (nDCG). We highlight the best values for each metric, not considering
the Random andMostPop baselines, which only serve as reference points. Recommending random itemswill, for example,
lead to high item coverage, but not to many relevant item suggestions.

In our analysis we found that some of our beyond-accuracy can be highly correlated, which is to some extent expected
as many of them are based on item popularity characteristics, as discussed above. Table 8 shows the outcomes of an
analysis of metric correlations. In this table, we report in howmany cases (datasets) a metric is correlated with another
one with a Pearson product-moment correlation coe�cient (PPMCC) higher than 0.9 or lower than -0.9. We can observe
that both the ACLT and the PRSP metrics are consistently correlated with the APLTmetric. For the sake of conciseness,
we therefore only report the APLT metric here and omit ACLT and PRSP from the tables. All detailed results also for
these metrics can be found in the online material.

Generally, we observe that the ranking of the algorithms is not entirely consistent across the datasets. Here, we
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Table 8: Summary of Metric Correlations. A ✓ in a cell
indicates a correlation of more than 0.9 (or beyond -0.9 vice
versa) for one of the datasets. Two or three ✓ symbols mean
that such a high correlation was also found for the second or
the third dataset.
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Table 8. Summary of Metric Correlations. A ✓ in a cell indicates a correlation of more than 0.9 (or beyond -0.9 vice versa) for one
of the datasets. Two or three ✓ symbols mean that such a high correlation was also found for the second or the third dataset.

PPMCC Gini EFD EPC PREO PRSP ACLT APLT ARP
IC ✓ – – ✓ – – – ✓
Gini – – ✓ ✓✓ ✓ ✓ –
EFD ✓ – ✓ ✓ ✓ –
EPC ✓ – ✓ ✓ –
PREO ✓ ✓ ✓ –
PRSP ✓✓✓ ✓✓✓ –
ACLT ✓✓✓ –
APLT –

Table 9. Beyond Accuracy Results for MovieLens-1M. The tables are sorted by nDCG in descending order. The notation@N indicates
that the metrics are computed considering recommendation lists of N elements. To ease the interpretation of the results and to
associate higher values with more diversified recommendation lists, we report the value of 1−𝐺𝑖𝑛𝑖 .

Algorithm Top@10

IC Gini EFD EPC PREO APLT ARP

EASE𝑅 838.0 0.068 2.690 0.583 0.978 0.003 1,062.727
SLIM 654.2 0.052 2.672 0.244 0.995 0.001 1,121.384
MF2020 920.2 0.077 2.672 0.244 0.968 0.005 1,042.373
UserKNN 1075.2 0.067 2.489 0.227 0.971 0.010 1,085.550
RP3𝛽 854.4 0.048 2.461 0.223 0.959 0.011 1,181.638
iALS 712.2 0.080 2.516 0.232 0.997 0.000 935.914
MultiVAE 1625.2 0.136 2.422 0.221 0.828 0.042 871.869
ItemKNN 1054.8 0.066 2.346 0.214 0.952 0.011 1,090.926
NeuMF 1367.2 0.111 2.292 0.209 0.910 0.028 938.861
BPRMF 1137.8 0.091 2.226 0.203 0.928 0.010 1,047.232
MostPop 56.2 0.005 1.187 0.103 1.000 0.000 1,746.694
Random 2810.0 0.876 0.074 0.006 0.039 0.696 151.045

Algorithm Top@20

IC Gini EFD EPC PREO APLT ARP

EASE𝑅 1093.0 0.091 2.264 0.207 0.963 0.006 949.860
SLIM 854.0 0.069 2.239 0.205 0.986 0.003 1,017.374
MF2020 1128.8 0.095 2.257 0.207 0.946 0.009 969.260
RP3𝛽 1207.2 0.073 2.085 0.190 0.937 0.018 1,024.408
UserKNN 1465.8 0.092 2.090 0.191 0.947 0.017 970.255
iALS 901.000 0.105 2.138 0.197 0.983 0.002 838.660
MultiVAE 1924.8 0.156 2.082 0.190 0.792 0.052 821.849
ItemKNN 1346.0 0.082 1.977 0.181 0.939 0.015 1,006.978
BPRMF 1386.2 0.111 1.893 0.173 0.890 0.017 968.784
NeuMF 1679.4 0.135 1.965 0.179 0.867 0.038 868.452
MostPop 92.0 0.010 1.039 0.092 1.000 0.000 1,570.672
Random 2810.0 0.911 0.075 0.007 0.037 0.693 151.352

Table 10. Beyond Accuracy Results for Amazon Digital Music. The tables are sorted by nDCG in descending order.

Algorithm Top@10

IC Gini EFD EPC PREO APLT ARP

RP3𝛽 9959.0 0.542 0.409 0.033 0.308 0.299 23.759
EASE𝑅 7789.0 0.178 0.368 0.031 0.537 0.054 56.155
SLIM 8215.4 0.197 0.361 0.030 0.552 0.067 49.287
UserKNN 7703.8 0.181 0.363 0.030 0.552 0.056 51.910
iALS 4516.2 0.136 0.325 0.027 0.766 0.009 41.936
ItemKNN 9686.2 0.478 0.345 0.027 0.097 0.550 9.884
MF2020 4722.8 0.099 0.242 0.021 0.687 0.009 59.949
NeuMF 7365.2 0.228 0.245 0.020 0.455 0.058 30.236
MultiVAE 6043.0 0.189 0.235 0.020 0.578 0.045 40.475
BPRMF 3050.0 0.024 0.078 0.007 0.784 0.001 130.810
MostPop 15.6 0.001 0.039 0.004 1.000 0.000 182.800
Random 10025.8 0.852 0.002 0.000 0.229 0.460 9.840

Algorithm Top@20

IC Gini EFD EPC PREO APLT ARP

RP3𝛽 10016.0 0.609 0.293 0.024 0.318 0.299 22.353
EASE𝑅 9441.0 0.233 0.267 0.022 0.542 0.071 47.987
SLIM 9659.4 0.253 0.263 0.022 0.548 0.086 43.337
UserKNN 9294.2 0.237 0.264 0.022 0.543 0.073 45.834
iALS 5941.6 0.177 0.243 0.020 0.700 0.015 37.520
ItemKNN 9976.2 0.528 0.247 0.019 0.121 0.546 9.870
MF2020 6389.4 0.135 0.187 0.016 0.661 0.014 51.479
NeuMF 8533.2 0.266 0.180 0.015 0.468 0.075 27.416
MultiVAE 9161.4 0.329 0.178 0.015 0.519 0.094 33.590
BPRMF 4283.0 0.034 0.064 0.006 0.787 0.002 108.296
MostPop 29.2 0.002 0.033 0.004 1.000 0.000 148.838
Random 10025.8 0.895 0.002 0.000 0.158 0.460 9.838

the popularity bias. The ranking of the algorithms however varies across datasets. On the ML1M dataset, the
differences between algorithms are also generally smaller than for other datasets. On the other end of the spectrum,
we observe that the neural methods NeuMF and MultiVAE sometimes succeed to include less popular items in
the recommendation lists. RP3𝛽 and ItemKNN are similarly successful on the Epinions and AMZm in this respect.
TheAPLTmetric, which considers the popularity and coverage of long-tail items are negatively correlated with
theARPmetric, i.e., the more popular items are recommended, the fewer from the long tail.
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• For ARP, which reports the average item popularity in the
top-n lists, we find that BPRMF often has the strongest ten-
dency to recommend popular items on all datasets. MF2020
and EASER are also often at the higher end regarding the pop-
ularity bias. The ranking of the algorithms however varies
across datasets. On the ML1M dataset, the differences be-
tween algorithms are also generally smaller than for other
datasets. On the other end of the spectrum, we observe that
the neural methods NeuMF and MultiVAE sometimes suc-
ceed to include less popular items in the recommendation
lists. RP3β and ItemKNN are similarly successful on the Epin-
ions and AMZm in this respect. The APLT metric, which
considers the popularity and coverage of long-tail items are
negatively correlated with the ARP metric, i.e., the more
popular items are recommended, the fewer from the long tail.

• The novelty metrics EPC and EFD, like all remaining beyond-
accuracy metrics considered here, are generally negatively
correlated with the ARP metric as well. An interesting pat-
tern here is that models that perform well on the nDCG are
also mostly highly ranked in terms of the novelty metrics.

• Looking at the fairness metric PREO, which is also based
on item popularity and where lower values are better, the

picture is not so clear. The neural MultiVAE method, for
example, seems to rather consistently produce relatively fair
recommendations according to this metric. ItemKNN leads
to very good results on the Epinions and Amazon dataset,
and to average performance on the ML1M dataset. For this
latter dataset, the spread of values is however not too high.

• Finally, considering the Gini index, MultiVAE generally
leads to lower concentration levels on ML1M , and ItemKNN
and RP3β have lower concentration effects for the Epin-
ions and AMZm datasets. Looking at Item Coverage, both
nearest-neighbor methods and the neural approaches are typ-
ically better than the matrix factorization techniques iALS
and BPRMF. The patterns are however not consistent across
datasets. EASER , for example, leads to relatively high item
coverage on AMZm, but not on the other datasets.

Overall, not many consistent patterns regarding beyond-accuracy
measures across all three datasets can be observed. One example
of such a pattern is a certain popularity bias of the BPRMF method,
which was previously observed [16]. Some patterns, like good item
coverage for ItemKNN, are only found for the AMZm and Epinions
datasets, which suggests that the widely used ML1M dataset may be
to some extent unique and it stands to question how representative
this dense dataset is for other typical application scenarios, e.g., for
e-commerce settings.

3.3 Time Measurements
We carried out all experiments on a computing cluster of our or-
ganization. The used cluster is based on IBM Power9 processors
and has 980 nodes. Each node is equipped with 32 cores and 4
NVIDIA Volta GPUs. One cluster node with 200GB of RAM with
4 logical CPUs was reserved for each experiment. In addition, one
NVIDIA Volta GPU with 16GB of RAM has been allocated for the
experiments with the neural models NeuMF and MultiVAE. Table 12
shows the time measurements obtained for the three datasets, using
the optimal parameters (e.g., number of latent factors) that were
determined through hyperparameter tuning. The numbers reported
in the table refer to the time needed (in seconds) to train the model

Table 8: Summary of Metric Correlations. A ✓ in a cell
indicates a correlation of more than 0.9 (or beyond -0.9 vice
versa) for one of the datasets. Two or three ✓ symbols mean
that such a high correlation was also found for the second or
the third dataset.
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to very good results on the Epinions and Amazon dataset,
and to average performance on the ML1M dataset. For this
latter dataset, the spread of values is however not too high.
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leads to lower concentration levels on ML1M , and ItemKNN
and RP3β have lower concentration effects for the Epin-
ions and AMZm datasets. Looking at Item Coverage, both
nearest-neighbor methods and the neural approaches are typ-
ically better than the matrix factorization techniques iALS
and BPRMF. The patterns are however not consistent across
datasets. EASER , for example, leads to relatively high item
coverage on AMZm, but not on the other datasets.

Overall, not many consistent patterns regarding beyond-accuracy
measures across all three datasets can be observed. One example
of such a pattern is a certain popularity bias of the BPRMF method,
which was previously observed [16]. Some patterns, like good item
coverage for ItemKNN, are only found for the AMZm and Epinions
datasets, which suggests that the widely used ML1M dataset may be
to some extent unique and it stands to question how representative
this dense dataset is for other typical application scenarios, e.g., for
e-commerce settings.

3.3 Time Measurements
We carried out all experiments on a computing cluster of our or-
ganization. The used cluster is based on IBM Power9 processors
and has 980 nodes. Each node is equipped with 32 cores and 4
NVIDIA Volta GPUs. One cluster node with 200GB of RAM with
4 logical CPUs was reserved for each experiment. In addition, one
NVIDIA Volta GPU with 16GB of RAM has been allocated for the
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Table 9: Beyond Accuracy Results for MovieLens-1M. The tables are sorted by nDCG in descending order. The notation @N
indicates that the metrics are computed considering recommendation lists of N elements. To ease the interpretation of the
results and to associate higher values with more diversified recommendation lists, we report the value of 1−Gini.
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RP3𝛽 854.4 0.048 2.461 0.223 0.959 0.011 1,181.638
iALS 712.2 0.080 2.516 0.232 0.997 0.000 935.914
MultiVAE 1625.2 0.136 2.422 0.221 0.828 0.042 871.869
ItemKNN 1054.8 0.066 2.346 0.214 0.952 0.011 1,090.926
NeuMF 1367.2 0.111 2.292 0.209 0.910 0.028 938.861
BPRMF 1137.8 0.091 2.226 0.203 0.928 0.010 1,047.232
MostPop 56.2 0.005 1.187 0.103 1.000 0.000 1,746.694
Random 2810.0 0.876 0.074 0.006 0.039 0.696 151.045

Algorithm Top@20

IC Gini EFD EPC PREO APLT ARP

EASE𝑅 1093.0 0.091 2.264 0.207 0.963 0.006 949.860
SLIM 854.0 0.069 2.239 0.205 0.986 0.003 1,017.374
MF2020 1128.8 0.095 2.257 0.207 0.946 0.009 969.260
RP3𝛽 1207.2 0.073 2.085 0.190 0.937 0.018 1,024.408
UserKNN 1465.8 0.092 2.090 0.191 0.947 0.017 970.255
iALS 901.000 0.105 2.138 0.197 0.983 0.002 838.660
MultiVAE 1924.8 0.156 2.082 0.190 0.792 0.052 821.849
ItemKNN 1346.0 0.082 1.977 0.181 0.939 0.015 1,006.978
BPRMF 1386.2 0.111 1.893 0.173 0.890 0.017 968.784
NeuMF 1679.4 0.135 1.965 0.179 0.867 0.038 868.452
MostPop 92.0 0.010 1.039 0.092 1.000 0.000 1,570.672
Random 2810.0 0.911 0.075 0.007 0.037 0.693 151.352

Table 10. Beyond Accuracy Results for Amazon Digital Music. The tables are sorted by nDCG in descending order.

Algorithm Top@10

IC Gini EFD EPC PREO APLT ARP

RP3𝛽 9959.0 0.542 0.409 0.033 0.308 0.299 23.759
EASE𝑅 7789.0 0.178 0.368 0.031 0.537 0.054 56.155
SLIM 8215.4 0.197 0.361 0.030 0.552 0.067 49.287
UserKNN 7703.8 0.181 0.363 0.030 0.552 0.056 51.910
iALS 4516.2 0.136 0.325 0.027 0.766 0.009 41.936
ItemKNN 9686.2 0.478 0.345 0.027 0.097 0.550 9.884
MF2020 4722.8 0.099 0.242 0.021 0.687 0.009 59.949
NeuMF 7365.2 0.228 0.245 0.020 0.455 0.058 30.236
MultiVAE 6043.0 0.189 0.235 0.020 0.578 0.045 40.475
BPRMF 3050.0 0.024 0.078 0.007 0.784 0.001 130.810
MostPop 15.6 0.001 0.039 0.004 1.000 0.000 182.800
Random 10025.8 0.852 0.002 0.000 0.229 0.460 9.840

Algorithm Top@20

IC Gini EFD EPC PREO APLT ARP

RP3𝛽 10016.0 0.609 0.293 0.024 0.318 0.299 22.353
EASE𝑅 9441.0 0.233 0.267 0.022 0.542 0.071 47.987
SLIM 9659.4 0.253 0.263 0.022 0.548 0.086 43.337
UserKNN 9294.2 0.237 0.264 0.022 0.543 0.073 45.834
iALS 5941.6 0.177 0.243 0.020 0.700 0.015 37.520
ItemKNN 9976.2 0.528 0.247 0.019 0.121 0.546 9.870
MF2020 6389.4 0.135 0.187 0.016 0.661 0.014 51.479
NeuMF 8533.2 0.266 0.180 0.015 0.468 0.075 27.416
MultiVAE 9161.4 0.329 0.178 0.015 0.519 0.094 33.590
BPRMF 4283.0 0.034 0.064 0.006 0.787 0.002 108.296
MostPop 29.2 0.002 0.033 0.004 1.000 0.000 148.838
Random 10025.8 0.895 0.002 0.000 0.158 0.460 9.838

the popularity bias. The ranking of the algorithms however varies across datasets. On the ML1M dataset, the
differences between algorithms are also generally smaller than for other datasets. On the other end of the spectrum,
we observe that the neural methods NeuMF and MultiVAE sometimes succeed to include less popular items in
the recommendation lists. RP3𝛽 and ItemKNN are similarly successful on the Epinions and AMZm in this respect.
The APLT metric, which considers the popularity and coverage of long-tail items are negatively correlated with
the ARP metric, i.e., the more popular items are recommended, the fewer from the long tail.
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Table 8. Summary of Metric Correlations. A ✓ in a cell indicates a correlation of more than 0.9 (or beyond -0.9 vice versa) for one
of the datasets. Two or three ✓ symbols mean that such a high correlation was also found for the second or the third dataset.

PPMCC Gini EFD EPC PREO PRSP ACLT APLT ARP
IC ✓ – – ✓ – – – ✓
Gini – – ✓ ✓✓ ✓ ✓ –
EFD ✓ – ✓ ✓ ✓ –
EPC ✓ – ✓ ✓ –
PREO ✓ ✓ ✓ –
PRSP ✓✓✓ ✓✓✓ –
ACLT ✓✓✓ –
APLT –

Table 9. Beyond Accuracy Results for MovieLens-1M. The tables are sorted by nDCG in descending order. The notation @N indicates
that the metrics are computed considering recommendation lists of N elements. To ease the interpretation of the results and to
associate higher values with more diversified recommendation lists, we report the value of 1−𝐺𝑖𝑛𝑖 .
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Table 11. Beyond Accuracy Results for Epinions. The tables are sorted by nDCG in descending order.

Algorithm Top@10

IC Gini EFD EPC PREO APLT ARP

UserKNN 3402.2 0.073 1.198 0.112 0.398 0.080 315.724
EASER 2765.0 0.055 1.197 0.114 0.501 0.046 341.486
RP3𝛽 6009.0 0.197 1.237 0.112 0.198 0.275 226.165
SLIM 3361.0 0.081 1.197 0.110 0.452 0.061 246.216
MultiVAE 3386.8 0.089 1.105 0.102 0.364 0.105 293.641
ItemKNN 5832.8 0.160 1.084 0.097 0.171 0.267 214.681
MF2020 1235.2 0.028 0.921 0.090 0.786 0.008 368.003
NeuMF 3595.0 0.084 0.905 0.085 0.495 0.096 322.865
BPRMF 1322.8 0.018 0.824 0.081 0.651 0.012 475.629
iALS 1613.4 0.064 0.891 0.081 0.707 0.010 214.989
MostPop 41.6 0.001 0.273 0.030 1.000 0.000 719.301
Random 8443.0 0.823 0.011 0.001 0.142 0.738 27.565

Algorithm Top@20

IC Gini EFD EPC PREO APLT ARP

UserKNN 4594.6 0.095 0.962 0.090 0.442 0.083 275.265
EASER 3705.0 0.071 0.965 0.091 0.522 0.047 297.062
RP3𝛽 7010.8 0.232 0.983 0.089 0.262 0.268 198.240
SLIM 4401.2 0.098 0.965 0.089 0.493 0.063 228.155
MultiVAE 4249.6 0.112 0.900 0.083 0.426 0.112 255.457
ItemKNN 7100.2 0.188 0.875 0.079 0.272 0.262 199.488
MF2020 1631.2 0.040 0.766 0.074 0.776 0.009 320.867
NeuMF 4647.0 0.108 0.756 0.071 0.542 0.105 276.817
BPRMF 1793.6 0.026 0.693 0.067 0.640 0.012 409.832
iALS 2052.0 0.078 0.730 0.066 0.654 0.016 202.718
MostPop 72.0 0.002 0.244 0.027 1.000 0.000 629.745
Random 8443.6 0.875 0.011 0.001 0.079 0.738 27.654

• The novelty metrics EPC and EFD, like all remaining beyond-accuracy metrics considered here, are generally
negatively correlated with the ARP metric as well. An interesting pattern here is that models that perform well
on the nDCG are also mostly highly ranked in terms of the novelty metrics.

• Looking at the fairness metric PREO, which is also based on item popularity and where lower values are better, the
picture is not so clear. The neural MultiVAE method, for example, seems to rather consistently produce relatively fair
recommendations according to this metric. ItemKNN leads to very good results on the Epinions and Amazon dataset,
and to average performance on the ML1M dataset. For this latter dataset, the spread of values is however not too high.

• Finally, considering the Gini index, MultiVAE generally leads to lower concentration levels on ML1M , and ItemKNN
and RP3𝛽 have lower concentration effects for the Epinions and AMZm datasets. Looking at Item Coverage, both
nearest-neighbor methods and the neural approaches are typically better than the matrix factorization techniques
iALS and BPRMF. The patterns are however not consistent across datasets. EASE𝑅 , for example, leads to relatively
high item coverage on AMZm, but not on the other datasets.

Overall, not many consistent patterns regarding beyond-accuracy measures across all three datasets can be observed.
One example of such a pattern is a certain popularity bias of the BPRMF method, which was previously observed [15].
Some patterns, like good item coverage for ItemKNN, are only found for the AMZm and Epinions datasets, which suggests
that the widely used ML1M dataset may be to some extent unique and it stands to question how representative this dense
dataset is for other typical application scenarios, e.g., for e-commerce settings.

3.3 TimeMeasurements

We carried out all experiments on a computing cluster of our organization. The used cluster is based on IBM Power9
processors and has 980 nodes. Each node is equipped with 32 cores and 4 NVIDIA Volta GPUs. One cluster node with
200GB of RAM with 4 logical CPUs was reserved for each experiment. In addition, one NVIDIA Volta GPU with 16GB
of RAM has been allocated for the experiments with the neural models NeuMF and MultiVAE. Table 12 shows the time
measurements obtained for the three datasets, using the optimal parameters (e.g., number of latent factors) that were
determined through hyperparameter tuning. The numbers reported in the table refer to the time needed (in seconds)
to train the model once, and to create and evaluate the recommendation lists for all users in the test set.

The results show that there is a substantial spread between the algorithms. While there are some models that complete
training and testing within one minute, training the MF2020 method on the ML1M dataset, where it performed well, took
several days. We note here that more efficient implementations of matrix factorization techniques have been proposed [29].
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algorithms. While there are some models that complete training
and testing within one minute, training the MF2020 method on the
ML1M dataset, where it performed well, took several days. We note
here that more efficient implementations of matrix factorization
techniques have been proposed [30]. Also the NeuMF model needed
substantial time to complete the computations. In contrast, the Mul-
tiVAE model, which was also originally evaluated on larger datasets

in Liang et al. [21] was among the fastest models. The neighborhood-
based models and RP3β were also implemented for high efficiency.
For the other datasets, Epinions and Amazon, the results are sim-
ilar with NeuMF and the matrix factorization models often taking
substantial computation time. For this latter class of models, the effi-
ciency also largely depends on the optimal number of latent factors.

Generally, combining the timing results with accuracy results
from above, we see no clear indication for the given datasets that
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Table 12. Training and evaluation time

Algorithm time (sec.)

MF2020 1.53⇥104
NeuMF 7.97⇥103
BPRMF 3.97⇥103
iALS 331.93
UserKNN 87.29
EASE' 85.93
SLIM 73.19
MultiVAE 67.03
RP3V 47.06
ItemKNN 42.74
Random 27.49
MostPop 24.63

(a) MovieLens-1M

Algorithm time (sec.)

NeuMF 3.57⇥104
iALS 2.90⇥104
MF2020 2.65⇥104
MultiVAE 1.37⇥104
EASE' 1.85⇥103
BPRMF 1.51⇥103
SLIM 403.29
RP3V 270.78
ItemKNN 257.96
UserKNN 247.68
Random 50.86
MostPop 45.58
(b) Amazon Digital Music

Algorithm time (sec.)

iALS 3.27⇥104
MF2020 1.97⇥104
NeuMF 3.46⇥103
BPRMF 2.26⇥103
EASE' 1.12⇥103
SLIM 344.69
MultiVAE 215.43
RP3V 148.24
UserKNN 144.05
ItemKNN 139.42
Random 47.99
MostPop 44.24

(c) Epinions

Also the NeuMFmodel needed substantial time to complete the computations. In contrast, the MultiVAEmodel, which
was also originally evaluated on larger datasets in Liang et al. [20]was among the fastestmodels. The neighborhood-based
models and RP3V were also implemented for high e�ciency. For the other datasets, Epinions and Amazon, the results
are similar with NeuMF and the matrix factorization models often taking substantial computation time. For this latter
class of models, the e�ciency also largely depends on the optimal number of latent factors.

Generally, combining the timing results with accuracy results from above, we see no clear indication for the given
datasets that computationally more complex models are favorable in terms of prediction accuracy.

4 SUMMARY, DISCUSSION&OUTLOOK

In recent years, several researchers have identi�edmajor challengeswith respect to reproducibility and progress in recom-
mender systems research.Various factors contribute to thesephenomena, inparticular (a) that a larger fractionofpublished
research is not reproducible because authors do not share the required artifacts and (b) that the experiments in published
research mainly aim to highlight the superiority of a newmodel. In the context of this latter aspect, this practically often
means that only the newmethod is carefully �ne-tuned but not the compared baselinemethods. Furthermore, the choice of
the baselines is sometimes limited to very recentmodels, thus probablymissing strongbaselines thatwere published earlier.

With this work, our goal is to address these open issues in di�erent ways. First, we conducted a large number of
reproducible experiments on di�erent datasets and involving a variety of algorithms from di�erent families in order
to provide an independent evaluation of existing techniques along di�erent quality and performance measures. The
outcomes of these experiments shall help guide researchers in the choice of baseline algorithms to consider in their own
research. In particular we found that one should consider algorithms of di�erent types in any evaluation, as there appears
to be no single method that is better than all others in all experimental con�gurations. Second, we ran these experiments
with the help of a recent general evaluation framework for recommender systems [2], thus allowing other researchers
to benchmark their newmodels within a de�ned environment and against already well-tuned baselines.

In terms of the outcomes of the experiments, our reproducibility study con�rmed earlier �ndings that the latest models
are not often the best performing ones, in particular for the modest-sized datasets that we considered in our evaluation.
In our ongoing and future work, we plan to �ne-tune our models also on larger datasets and to share these tuned models
publicly. Thereby, we hope to reduce the often huge computational e�ort that other researchers would otherwise need to
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to benchmark their newmodels within a de�ned environment and against already well-tuned baselines.

In terms of the outcomes of the experiments, our reproducibility study con�rmed earlier �ndings that the latest models
are not often the best performing ones, in particular for the modest-sized datasets that we considered in our evaluation.
In our ongoing and future work, we plan to �ne-tune our models also on larger datasets and to share these tuned models
publicly. Thereby, we hope to reduce the often huge computational e�ort that other researchers would otherwise need to
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(c) Epinions

Generally, combining the timing results with accuracy results
from above, we see no clear indication for the given datasets that
computationally more complex models are favorable in terms of
prediction accuracy.

4 SUMMARY, DISCUSSION & OUTLOOK
In recent years, several researchers have identified major challenges
with respect to reproducibility and progress in recommender sys-
tems research. Various factors contribute to these phenomena, in
particular (a) that a larger fraction of published research is not repro-
ducible because authors do not share the required artifacts and (b)
that the experiments in published research mainly aim to highlight
the superiority of a new model. In the context of this latter aspect,
this practically often means that only the new method is carefully
fine-tuned but not the compared baseline methods. Furthermore, the
choice of the baselines is sometimes limited to very recent models,
thus probably missing strong baselines that were published earlier.

With this work, our goal is to address these open issues in dif-
ferent ways. First, we conducted a large number of reproducible
experiments on different datasets and involving a variety of algo-
rithms from different families in order to provide an independent
evaluation of existing techniques along different quality and per-
formance measures. The outcomes of these experiments shall help
guide researchers in the choice of baseline algorithms to consider in
their own research. In particular we found that one should consider
algorithms of different types in any evaluation, as there appears to
be no single method that is better than all others in all experimental
configurations. Second, we ran these experiments with the help of
a recent general evaluation framework for recommender systems
[2], thus allowing other researchers to benchmark their new mod-
els within a defined environment and against already well-tuned
baselines.

In terms of the outcomes of the experiments, our reproducibility
study confirmed earlier findings that the latest models are not often
the best performing ones, in particular for the modest-sized datasets
that we considered in our evaluation. In our ongoing and future
work, we plan to fine-tune our models also on larger datasets and to
share these tuned models publicly. Thereby, we hope to reduce the

often huge computational effort that other researchers would other-
wise need to fine-tune all baseline models whenever they propose a
new model. Over time, this collection of fine-tuned models for var-
ious datasets may represent a step towards a shared understanding
of what represents the “state-of-the-art” in algorithms research. For
these larger datasets, we also expect a more consistent and strong
performance of deep learning models.

Besides accuracy metrics, our experiments included a number
of beyond-accuracy metrics relating to popularity bias, novelty,
fairness, and item coverage. Our results confirm earlier findings
that there can be substantial differences between algorithms, e.g.,
in terms of their tendency to recommend popular items. Such algo-
rithm tendencies can be of high relevance in practical application
settings, e.g., when the goal is to support item discovery through
the recommendations. An important observation in our research is
that common metrics for novelty and fairness are tightly coupled
and correlated with general popularity biases13. Future research
might therefore strive to find alternative metrics that more often
go beyond popularity as indicators for novelty, diversity, fairness,
or serendipity.

In addition to this, a careful analysis on the effect of the optimiza-
tion goals for hyperparameter tuning is missing in the literature.
The results presented herein considered methods optimized for
one specific accuracy-oriented metric, i.e., nDCG. But what would
happen if other metrics are used for this optimization? It is true that
there are strong correlations between some metrics, as discussed
before, but it is also well-known that accuracy and beyond-accuracy
measurements are typically inversely related, hence, the question
of what “state-of-the-art” means in terms of these other metrics
remains open and should be addressed in the future.

Finally, another aspect regarding the splitting strategy has to
be taken into consideration. Here, we adopted a random hold-out
splitting strategy with repeated experiments that became popular
in recent literature. Together with k-folds cross-validation, they are
representative of the evaluation protocols adopted in recent works.
Nevertheless, random-based splitting strategies undoubtedly fa-
vor some methods since information regarding the future general
13In theory, the Gini index is not necessarily tied to popularity biases, but with the typical
long-tail distributions it usually captures a concentration of items in the “short head”.
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that there can be substantial differences between algorithms, e.g.,
in terms of their tendency to recommend popular items. Such algo-
rithm tendencies can be of high relevance in practical application
settings, e.g., when the goal is to support item discovery through
the recommendations. An important observation in our research is
that common metrics for novelty and fairness are tightly coupled
and correlated with general popularity biases13. Future research
might therefore strive to find alternative metrics that more often
go beyond popularity as indicators for novelty, diversity, fairness,
or serendipity.

In addition to this, a careful analysis on the effect of the optimiza-
tion goals for hyperparameter tuning is missing in the literature.
The results presented herein considered methods optimized for
one specific accuracy-oriented metric, i.e., nDCG. But what would
happen if other metrics are used for this optimization? It is true that
there are strong correlations between some metrics, as discussed
before, but it is also well-known that accuracy and beyond-accuracy
measurements are typically inversely related, hence, the question
of what “state-of-the-art” means in terms of these other metrics
remains open and should be addressed in the future.

Finally, another aspect regarding the splitting strategy has to
be taken into consideration. Here, we adopted a random hold-out
splitting strategy with repeated experiments that became popular
in recent literature. Together with k-folds cross-validation, they are
representative of the evaluation protocols adopted in recent works.
Nevertheless, random-based splitting strategies undoubtedly fa-
vor some methods since information regarding the future general
users’ behavior is exploited in the training phase. More realistic

13In theory, the Gini index is not necessarily tied to popularity biases, but with the typical
long-tail distributions it usually captures a concentration of items in the “short head”.
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time-aware splitting strategies should be investigated to study how
much they impact the overall ranking of recommendation systems.
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