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Abstract
Recommendation services have been extensively adopted in various user-centered appli-
cations to help users navigate a vast space of possible choices. In such scenarios, data
ownership is a crucial concern since users may not be willing to share their sensitive
preferences (e.g., visited locations, read books, bought items) with a central server. Unfortu-
nately, data collection is at the basis of modern approaches to the recommendation problem.
Decreased users’ willingness to share personal information and data protection policies can
result in the “data scarcity” dilemma affecting applications such as recommender systems.
In the work at hand, we thoroughly study and extend FPL (Federated Pair-wise Learning),
a recommendation approach that follows the Federated Learning principles. In FPL, users
collaborate in training a pair-wise learning to rank factorization model while controlling
the amount of sensitive data that leaves their devices. An extensive experimental evaluation
reveals the effectiveness of the proposed architecture concerning the accuracy and beyond-
accuracy objectives and the impact of disclosed users’ information on the quality of the
final model. The paper also analyzes the impact of communication costs with the central
server on the system’s performance by varying local computation and training parallelism.
Furthermore, the study investigates the injection of additional biases in the final recommen-
dation that could affect the fairness of the system. The public implementation is available at
https://split.to/sisinflab-fpl.
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1 Introduction

Recommender Systems (RSs) have emerged as a solution to better support users’ decision-
making and promote business by recommending novel and personalized items. These
models are generally hosted on centralized servers and train their models by exploiting
massive proprietary and sensitive data. For instance, Collaborative Filtering (CF) models,
which have been the mainstream research line in the RS community over the last two
decades (McFee et al., 2012; Yuan et al., 2016), need sufficient in-domain interaction data
to discover similar behavioral/preference patterns in a user community. In principle, this
could result in a grave threat to users’ privacy. Moreover, the European Union, the US
Congress, and other jurisdictions legislated new disclosure laws in recent years. As an exam-
ple, in 2018, GDPR (General data protection regulation, 2020) was proposed by the EU
that removes the default option for collecting, storing, and harnessing individual data and
requires explicit authorization from the users to use their data. Although the fundamental
role played by these laws is to protect users’ privacy, the consequent data scarcity dilemma
can thereby jeopardize the training of high-quality models.

In this context, Federated Learning (FL) has been proposed by Google in recent years as
a means to offer a privacy-by-design solution for machine-learned models (Konecný et al.
2015, 2016, McMahan et al. 2017). Federated learning aims to meet ML-privacy short-
comings by horizontally distributing the model’s training over user devices; thus, clients
locally train the global model exploiting private data without sharing it (McMahan et al.,
2017). Federated Learning differs from distributed computing, since in the latter we witness
a well-balanced computational effort among devices. Instead, with Federated Learning, the
overall data is supposed to be massive in amount and unbalanced between personal devices.
Recently, the benefits of federated learning in recommender systems have led to advantages
for the privacy of the users of those systems (Anelli et al., 2021a). FPL (short for Federated
Pair-wise Learning) (Anelli et al., 2021b) is an example of how the outstanding performance
of Learning-to-Rank models for recommendation can be exploited in a federated scenario,
giving users greater control of their data. Indeed, a disruptive effect of employing FPL is
that users participating in the federation process can decide how much they are willing to
disclose their private sensitive preferences.

This work presents an extensive analysis of FPL considering a large number of dimen-
sions. In Anelli et al. (2021b), the authors analyzed how FPL, allowing users not to share a
portion of private data for privacy concerns, impacts the performance of the system itself.
This work extends the previous by a large margin, analyzing to what extent this portion
impacts accuracy, diversity, and bias disparity of recommendation and communication costs
in the whole system. Finally, the work investigates how local computation, i.e., user-wise
training of a recommendation model, affects the overall performance.

To summarize, our research tackles the following questions:

RQ1. Is it possible to integrate Pair-wise Learning with Federated Learning principles to
build a federated version of factorization models? What is the impact of federated
parameters (i.e., computation parallelism, and local computation amount) on the
quality of recommendation?
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RQ2. The protection of the user’s feedback can put the recommendation service in jeop-
ardy. Can users receive a high-quality recommendation while limiting the amount
of disclosed sensitive data?

RQ3. The sequentiality of the original pair-wise algorithms can be replicated at the price
of increased communication costs. What is the optimal (or sub-optimal) trade-off
between communication costs and recommendation utility?

RQ4. With limited training information, the recommendation algorithm might learn dif-
ferently and unexpectedly. Does the federated recommendation (and the possible
reduced information budget) inject additional biases in the final recommendation?

Our contributions are an in-depth investigation that aims to answer the above Research
Questions thoroughly. To this extent, we have carried out extensive experiments on real-
world datasets (Yang et al., 2016) in the Point of Interest (PoI) domain by considering
the accuracy of recommendation and diversity metrics (Item Coverage and Gini Index).
Afterward, we analyzed communication cost and accuracy in a multi-objective perspective
and fairness (i.e., the Bias Disparity) of FPL recommendations. The experimental evaluation
shows that FPL provides high-quality recommendations, putting the user in control of the
amount of sensitive data disclosed.

2 Related work

2.1 Collaborative filteringmethods for recommendation

Academia and industry have proposed several competitive recommendation algorithms.
Algorithms based on Nearest Neighbors, Latent Factor Models and Artificial Neural Net-
works are undoubtedly the most representative examples of the Collaborative Filtering
systems, that extract user preference patterns in a collaborative fashion.

The Nearest Neighbors scheme has shown its competitiveness for quite a long time. The
user-based scheme and the item-based scheme find the k-nearest user neighbors and the k-
nearest item neighbors based on a similarity function. It then exploits them to predict a score
for each user-item pair.

Although they use the same logic behind the scenes, user-based and item-based schemes
show their effectiveness in different contexts.

After these models, the most innovative idea to implement Collaborative Filtering has
been decomposing the user-item rating matrix and exploiting the dot product to reconstruct
the matrix and compute similarities. This idea led to the Matrix Factorization (MF) tech-
nique, which is probably the most representative of the factorization-based recommendation
family. Nevertheless, several generalized/specialized variants have been proposed, such
as FM (Rendle, 2010), SVD++ (Koren, 2008), PITF (Rendle & Schmidt-Thieme, 2010),
FPMC (Rendle et al., 2010).

Unfortunately, rating-prediction-oriented optimization, like SVD, has shown its limits in
the recommendation research (McNee et al., 2006). Consequently, a new class of Learning
to Rank algorithms has been developed in the last decade, mainly ranging from point-
wise (Koren & Sill, 2011) to pair-wise (Rendle et al., 2009), through List-wise (Shi et al.,
2010) approaches. Among pair-wise methods, BPR (Rendle et al., 2009) is one of the
most broadly adopted, thanks to its outstanding capabilities to correctly rank preserving an
acceptable computational complexity. It exploits a stochastic gradient descent algorithm to
learn the relative order between positive and negative items.
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In the last years, methods that exploit side information have emerged (Anelli et al., 2021;
Anelli et al., 2019a; Anelli et al., 2017). Finally, various architectures of deep neural net-
works have established themselves either in search and recommendation research. For each
kind of recommendation task, one or more neural architectures have emerged that show
competitive performance. Some examples are Recurrent Neural Networks for the sequential
recommendation, variational autoencoders for general purpose collaborative filtering, and
deep reinforcement learning methods for the interactive recommendation.

2.2 Motivations for federated learning

RSs need to collect user information related to attributes, demands, and preferences to work
properly (Jeckmans et al., 2013). As a rule of thumb, the accuracy of recommendations is
directly proportional to the level of detail of the gathered information (Huang et al., 2004).
Regrettably, the more detailed the knowledge about users is the more significant the threat
to the user’s privacy becomes (Bilge et al., 2013).

In contexts like this, Federated Learning was introduced to learn models from a popula-
tion while learning as little as possible about individuals. It meets the privacy shortcomings
by horizontally distributing the model’s training over user devices (McMahan et al., 2017).
Beyond privacy, Federated Learning has posed several other challenges and opened new
research directions (Kairouz et al. 2019; Anelli et al. 2019, 2020). Recently, Federated
learning has extended to a more comprehensive idea of privacy-preserving decentralized
collaborative ML approaches (Yang et al., 2019). These methods include horizontal feder-
ations, where different local datasets share the same feature space, and vertical federations,
where devices share the training samples; however, they differ in feature space. Yang et al.
(2019) identified some recent Federated Learning challenges and open research directions.

2.3 Federated recommender systems

Some researchers focused the attention on the decentralized and distributed matrix-
factorization approaches (Duriakova et al., 2019; Fierimonte et al., 2017). However, in this
work, we focus on federated learning principles theoretically and practically different from
classical decentralized and distributed approaches, since Federated Learning assumes the
presence of a coordinating server and the use of private and self-produced data on each node.

A federated implementation of collaborative filtering has been proposed in Ammad-ud-
din et al. (2019), which uses the SVD-MF method for implicit feedback (Hu et al., 2008).
Here, the training is a mixture of Alternating Least Squares (ALS) and Stochastic Gradi-
ent Descent (SGD) for preserving users’ privacy. However, its security limits have been
analyzed in Chai et al. (5555aug). Recently, the federated learning paradigm spread to the
recommendation tasks, thanks to its capability of dealing with sensitive data. As an example,
DeepRec (Han et al., 2021) proposes a sequential recommender system where on-device
training is performed to fine-tune with user sensitive data a deep learning model trained
with data collected before the GDPR regulations. The recent model PREFER (Guo et al.,
2021) is a sequence-based matrix factorization recommender system designed for the POI
domain: the training data is enriched with time and distance information and, similarly to
our model, does not share sensitive parameters about user profiles. Although sequential
models employ the same metrics as the other recommender systems, their evaluation pro-
tocol is different. Indeed, they usually exploit a temporal leave-one-out splitting protocol
and evaluate one recommendation per user, while other recommender systems mainly rely
on temporal hold-out, k-folds cross-validation, or fixed timestamp splitting and evaluate
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top-n recommendations per user. Moreover, each sequential model comes with a defini-
tion of session (necessary to compute the sequences), while this notion is absent in the
other recommendation systems. For these reasons, the comparison of our methods with
those recommender systems remains beyond the scope of the current work. Nevertheless,
incomprehensibly, almost no work addressed top-N recommendation exploiting the “Learn-
ing to rank” paradigm. In this sense, one rare example is the work by Kharitonov (2019),
who recently proposed to combine evolution strategy optimization with a privatization pro-
cedure based on differential privacy. The FPL framwework, introduced by Anelli et al.
(2021b), tackles some of the Federated learning challenges for a recommendation scenario
and introduces a federated pair-wise recommender system where users are in control of
their sensitive data. While the impact of incomplete data on its performance has been stud-
ied, other important research dimensions still need to be studied and are investigated in the
work at hand.

3 Background

In this section, we introduce the fundamentals of the federated learning paradigm, the pair-
wise learning to rank approach, and the factorization models. In detail, we designed the
section to provide (i) a brief motivation of the technologies, (ii) the essential mathematical
background, (iii) the formal definition of the main concepts, and (iv) the notation that is
adopted in the following.

3.1 Federated learning

Federated learning (FL) is a paradigm initially envisioned by Google (Konecný et al., 2016;
McMahan et al., 2017) to train a machine-learning model from data distributed among a
loose federation of users’ devices (e.g., personal mobile phones). The rationale is to face
the increasing issues of ownership and locality of data to mitigate the privacy risks resulting
from centralized machine learning (Kairouz et al., 2019) while improving personaliza-
tion (Jalalirad et al., 2019). In particular, given Θ denoting the parameters of a machine
learning model, we consider a learning scenario where the objective is to minimize a generic
loss function G(Θ). FL is a learning paradigm in which the users u ∈ U of a federation, who
are owners of the data useful to train the model, collaborate to solve the learning problem
under the coordination of a central server S without sharing or exchanging their raw data
with S. From an algorithmic point of view, we start with S sharing Θ with the federation
of devices. Then, specific methods solve a local optimization problem on the single device.
The client shares the parameters of its local model with S. The parameters provided by the
clients are then used to update Θ , which is sent back to the devices in a new iteration step.

Federated Learning poses some critical challenges. The first one is the feasibility of
the adoption of decentralized machine learning schemes in real-world scenarios, due to
client availability and communication potential issues. Another important challenge regards
the learning convergence. Indeed, the federated approach realizes a certain number of par-
allel local steps before aggregating the parameters in the central model. This approach
shows some similarities with batches (without the distributional guarantees) and therefore
several dissimilarities with classic SGD (Stochastic Gradient Descent) steps. Moreover, hur-
dles related to data distribution among devices remain at the core of FL research. Finally,
preventing the server or any other user from reconstructing a user’s dataset cannot be guar-
anteed by the only FL. In fact, it is achieved by juxtaposing schemes like encryption or
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differential privacy. All these challenges and many others are active topics in current FL
research. However, they remain out of our work scope since we focus on a more fundamental
problem: the user’s choice not to share a piece of their preference.

3.2 Factorizationmodels and pair-wise recommendation

A recommendation problem is usually conceived as the activity of finding the items of a
catalog a particular user might be interested in. Formally, let X ∈ R

|U |×|I| be the user-item
matrix where each entity xui represents an explicit or binary implicit feedback (e.g., explicit
rating or check-in, respectively) of user u ∈ U for item i ∈ I .

Definition 1 (Recommendation Problem) A recommendation problem over a set of users
U and a set of items I is defined as the activity of finding for each user u ∈ U an item i ∈ I
not rated by u that maximizes a utility function g : U × I → R.

In the work at hand, an implicit feedback scenario is considered — i.e., feedback is, e.g.,
purchases, visits, clicks, views, check-ins —, with X containing binary values. Therefore,
xui = 1 and xui = 0 denote either user u has consumed or not item i, respectively.

In FPL, the underlying data model is a Factorization model, inspired by MF (Koren
et al., 2009), a recommendation model that became popular in the last decade thanks to its
state-of-the-art recommendation accuracy (kumar Bokde et al., 2015).

Definition 2 (Matrix Factorization) Given a set of users U , a set of items I , and a matrix
X ∈ R

|U |×|I|, Matrix Factorization builds a model Θ in which each user u and each item i

is represented by the embedding vectors pu and qi , respectively, in the shared latent space
R

F . The core of the algorithm relies on the assumption that X can be factorized such that
the dot product between pu and qi can explain any observed user-item interaction xui , and
that any non-observed interaction can be estimated as:

x̂ui(Θ) = bi(Θ) + pT
u (Θ)qi (Θ), (1)

where bi is a term denoting the bias of the item i.

Among pair-wise approaches for learning-to-rank the items of a catalog, Bayesian Per-
sonalized Ranking (BPR) (Rendle et al., 2009) is one of the most broadly adopted, thanks
to its capabilities to correctly rank with acceptable computational complexity.

Definition 3 (Bayesian Personalized Ranking) Let K : U ×I ×I be a training set defined
by K = {(u, i, j) | xui = 1 ∧ xuj = 0}. Bayesian Personalized Ranking is an optimization
approach aiming to learn a model Θ that solves the personalized ranking task according to
the following optimization criterion:

max
Θ

∑

(u,i,j)∈K
ln σ(x̂uij (Θ)) − λ‖Θ‖2, (2)

where x̂uij (Θ) = x̂ui(Θ) − x̂uj (Θ) is a real value modeling the relation between user u,
item i and item j , σ(·) is the sigmoid function, and λ is a model-specific regularization
parameter to prevent overfitting.

Pair-wise optimization can be applied to a wide range of recommendation models,
included factorization. Hereafter, we denote the model Θ = 〈P,Q, b〉, where P ∈ R

|U |×F

is a matrix whose u-th row corresponds to the vector pu, and Q ∈ R
|I|×F is a matrix in
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which the i-th row corresponds to the vector qi . Finally, b ∈ R
|I| is a vector whose i-th

element corresponds to the value bi .

4 Federated Pair-wise Learning

In this section, we introduce the fundamental concepts regarding the Collaborative Filtering
recommendation using a Federated Learning scheme. Along with the problem definition,
the notation we adopt is presented. Hereby, we want to make the reader aware that FPL is
a tool for putting users in control of their data. In detail, here we focus on analyzing how
different levels of data disclosure affect the recommendation. Providing privacy guarantees,
e.g., by incorporating FPL in dedicated frameworks (Chai et al., 2019; Bonawitz et al., 2017;
Abadi et al., 2016), remains out of the scope of this work.

4.1 Architecture

Following the FL principles, let U be the set of users (clients) with a server S coordinating
them. Assume users consume items from a catalog I and give feedback about them (as in
the recommendation problem of Section 3.2). S is aware of the catalog I , while exclusively
user u knows her own set of consumed items.

To setup the federation for FPL, a shared global model is built on the server S, while
different private local models are built on each user’s device.

Definition 4 (FPL Global Model) In FPL, the server S builds a global model ΘS = 〈Q, b〉,
where Q ∈ R

|I|×F and b ∈ R
|I| are the item-factor matrix and the bias vector introduced

in Section 3.2.

Definition 5 (FPL Local Model) On each user u’s device FPL builds a model Θu = 〈pu〉,
which corresponds to the representation of user u in the latent space of dimensionality F .

Hence, in FPL, Θu and ΘS are privately combined together. The client produces tailored
recommendations by scalar multiplying local pu and qi . Each user u holds her own private
dataset xu ∈ R

I , which, analogously to a centralized recommender system, corresponds to
the u-th row of matrix X. Each FPL client u hosts a user-specific training set Ku : U×I×I
defined by Ku = {(u, i, j) | xui = 1 ∧ xuj = 0}, where xui represents the i-th element
of xu. Please note that we refer to X+ = ∑

u∈U |{xui | xui = 1}| as the total number of
positive interactions in the system.

4.2 Training procedure

The classic BPR-MF learning procedure (Rendle et al., 2009) for model training can not be
directly applied to the FPL model, since we have decoupled the representation of users and
items respectively on the local devices and the server. In the following, we show the FPL
learning procedure that is executed for a number R of rounds of communication and envis-
ages Distribution to Devices → Federated Optimization → Transmission to Server →
Global Aggregation sequences between the server and the clients (Fig. 1).

1. Distribution to Devices. S randomly selects a subset of users U−t ⊆ U and delivers to
them the current model Θt−1

S . The set U−t can be either defined by S, or the result of a
request for availability sent by S to clients in U .
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Fig. 1 Training protocol of FPL. In the middle, Item-Factor Matrix is sent by the server to the federation
of devices. On the left, local training phase is represented. The local output, together with the output of the
other devices, is sent to the server. On the right, server-side, aggregation of received updates is performed

2. Federated Optimization. Each user u ∈ U−t generates T random triples (u, i, j) from
her dataset Ku and for each of them performs BPR stochastic optimization to compute
the updates for the local pu vector of Θt−1

u , and for qi , bi , qj , and bj of the received
Θt−1

S , following:

Δθt = e−x̂uij

1 + e−x̂uij
· ∂

∂θ
x̂uij − λθt−1, (3)

with x̂uij = [bt−1
i + (pt−1

u )T · qt−1
i ] − [bt−1

j + (pt−1
u )T · qt−1

j ], (4)

and
∂

∂θ
x̂uij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(qt−1
i − qt−1

j ) if θ = pu,

pt−1
u if θ = qi ,

−pt−1
u if θ = qj ,

1 if θ = bi,

−1 if θ = bj .

(5)

It is worth noticing that Rendle et al. (2009) suggests, in a centralized scenario, to adopt
a uniform distribution (over K) to choose the training triples randomly. The purpose is
to avoid data traversed item-wise or user-wise, since this may lead to slow convergence.
Conversely, in a federated approach, we are required to train the model user-wise since
the training of each round of communication is performed separately on each client u

knowing only data in Ku. This is the reason why, in FPL, the designer can control the
number of triples T used for training, to tune the degree of local computation — i.e.,
how much the sampling is user-wise traversing. Moreover, it is worth noticing that, in
FPL, the users in the round t compute the gradients based on the same model parameters
Θt−1

S . As a consequence, their updates are independent and computed in parallel, unlike
in stochastic centralized learning.

At the end of the federated computation, given a shared learning rate α, each client
can update its local model Θu — containing the user profile pu — by aggregating the
computed update:

Θt
u := Θt−1

u + αΔΘt
u. (6)
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3. Transmission to Server. In a purely distributed architecture, each user in U−t returns
to S the computed update. Instead, in FPL, the clients in U−t send back to S a portion
of the updates (ΔΘt

S,u) for the computed item factor vector and item bias. In detail,
sharing all the updates may lead to a significant users’ private data disclosure that may
lead to a privacy issue if the server S is curious. On the one hand, each pair of updates
for a consumed item i and for a non-consumed item j contains equal but opposite gra-
dients. Thus, if the user u sends all of them to S, they may reveal patterns of like/dislike
user tastes. On the other hand, items rated by a user are more likely to be sampled and
their corresponding vectors to be updated, thus allowing the server S to reconstruct,
after some epochs, part of the user dataset Ku. Since our primary goal is to put users
in control of their data, FPL proposes a solution to overcome these vulnerabilities.
By sending the sole update (Δqj , Δbj ) of each training triple (u, i, j), user u would
share with S indistinguishably negative or missing values, which are assumed to be
non-sensitive data. Furthermore, in FPL we introduce the parameter π , which allows
users to control of the number of consumed items to share with the central server S. In
detail, π works as a probability that the update ΔΘt

S,u contains a specific positive item
update (Δqi , Δbi) in addition to (Δqj , Δbj ).

4. Global Aggregation. S aggregates the received updates in Q and b to build the new
model:

Θt
S := Θt−1

S + α
∑

u∈U−t

ΔΘt
S,u, (7)

with α being the learning rate (each row of Q and each element of b are updated by
summing up the contribution of all clients in U−t for the corresponding item).

FPL reshapes the training scheme of centralized BPR-MF. However, it does not affect the
computation for the model optimization, thus FPL has the same computational complexity
of BPR-MF. Nonetheless, it is important to consider that some hyperparameters, analyzed
in Section 4.3, can affect the convergence of FPL, increasing/decreasing the computation
and communication costs.

4.3 Convergence analysis of FPL

Unlike other learning paradigms, in federated learning, the training data is not independent
and identically distributed (non-iid). The user’s local data is not representative of the overall
data distribution. Therefore, one cannot replace them with samples drawn from the overall
distribution. In 2020, Li et al. (2020) has shown that, given L-smooth and μ-strongly con-
vex local losses like BPR, a federated optimization based on averaging of local parameters
converges to the global optimum with a convergence rate of O( 1

RT
). FPL may converge to

a sub-optimal solution at least 
(α(T − 1)) away from the optimal one if weight decay is
not considered. The number of rounds needed to reach a target performance is a function of
the number of local epochs T , both linearly and inversely dependent on it (Li et al., 2020).
Therefore, over-small and over-large values of T may lead to a large number of rounds
of communication. In particular, if data is non-iid and T exceeds O(RT ), convergence
is not guaranteed, since the sum of local minima may not correspond to the global mini-
mum. If sampling probabilities are highly non-uniform across the users, convergence may
be slower (Zhao et al., 2018). However, some novel schemes have been recently proposed
to address this issue (Li et al., 2020), and we will test them in future investigations.
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Finally, under the non-iid setting, the convergence rate has a weak dependence on the
size of U−. In practice, the participation ratio can be set small or large, according to the
communication requirements and without affecting FPL convergence.

4.4 Privacy analysis of FPL

Section 4 starts by stating that FPL has not been conceived to be a privacy-preserving frame-
work. Rather, it is a tool to control the trade-off between (potentially) exposed sensitive
data and the recommendation quality. Federated learning hides, by design, users’ raw data
to the server: the updates sent by clients are anonymously aggregated, and only the aggre-
gated information is deployed. Nevertheless, some malicious actors might still try to learn
sensitive information if they have access to parts of the system, as already discussed in
Section 4.2. For this reason, federated learning alone is not considered to provide privacy
guarantees to users. FPL is a federated recommender system fed by implicit feedback. Con-
sequently, providing privacy guarantees implies that the existence of each transaction in the
user’s history must be kept secret. With reference to (3) and (4), suppose a pair of positive
and negative items i and j . The notation of Δqt

i and Δqt
j could be extended by focusing on

a single latent factor f :

Δqt
i,f = pt−1

u,f σ (pt−1
u,f (qt−1

i,f − qt−1
j,f )), (8)

Δqt
j,f = −pt−1

u,f σ (pt−1
u,f (qt−1

i,f − qt−1
j,f )), (9)

where σ(·) returns values in the range (0, 1). These equations show that the modules of
Δqt

i,f and Δqt
j,f (that have to be sent to the server) are identical, while their signs are oppo-

site. Moreover, the sign of the update depends on both the existence/absence of a transaction
for k and on sgn(pt−1

u,f ). Therefore, the sign of a gradient does not directly reveal the pres-
ence or absence of an item in the user’s training set, but the pairs of positive and negative
gradients disclose user preference patterns. In a round of communication, all the updates for
the consumed items share the same sign, as well as all the updates for the non-consumed
items have the same positive or negative sign, depending on sgn(pt−1

u,f ). Suppose the server
S is a honest-but-curious agent, i.e., it may try to inspect the updates to obtain some user
information. Let us assume that, as soon as it obtains enough information adequate to iden-
tify one or more consumed/non-consumed items, the entire user dataset will be exposed. To
avoid this problem, FPL puts users in control of their data. If the users adopt the privacy-
oriented masking procedure discussed in Section 4.2, they can decide the fraction of updates
for positive items to send. In the case of exposure of the user transactions, only a fraction
is given up. This work studies and analyzes the recommendation performance in this data
scarcity scenario. While we do not explicitly define a user-specific protocol for privacy level
tuning, the system allows both possibilities: the system designer defines a fixed portion of
data users should share, or users actively decide the fraction of data to share. For instance,
the users might choose among a set of privacy/accuracy trade-off levels, as already happens
with location data in some commercial products. If a user is not satisfied with the accuracy
performance, she might modify the privacy/accuracy trade-off level at any moment.

Other possible privacy issues, like active reconstruction of the user profile, are not con-
sidered here and are out of the scope of this work. However, federated learning literature
already provides privacy protocols like differential privacy and cryptographic methods.
They have been proven to guarantee user privacy, so FPL architecture has been explicitly
designed to work with them.
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Table 1 Characteristics of the datasets used for experiments: |U |, |I|, and X+ are the number of users, items,
and records

Dataset |U | |I| X+ X+
|U |

X+
|I|

X+
|I|·|U | %

Brazil 17,473 47,270 599,958 34.34 12.69 0.00073%

Canada 1,340 29,518 63,514 47.40 2.15 0.00161%

Italy 1,353 25,522 54,088 39.98 2.20 0.00157%

5 Experimental setup

In this section, we introduce the experimental setting designed to answer the research
questions.

5.1 Datasets

The evaluation of FPL needs to meet some particular constraints: the availability of transac-
tion data to obtain a reliable experimental setting and a domain that guarantees the presence
of data the user may prefer to protect. Following these constraints, we believe that the Point-
of-Interest (PoI) domain would be optimal to test FPL, since it concerns data that users
usually perceive as sensitive. Among the many available datasets, a very good candidate is
the Foursquare dataset (Yang et al., 2016). In fact, it is often considered as a reference for
evaluating PoI recommendation models. To mimic a federation of devices in a single coun-
try, we have extracted check-ins for three countries, namely Brazil, Canada, and Italy. While
selecting the different countries, our only constraint was to obtain datasets with different
size/sparsity characteristics. Hence, we choose three countries in three different regions of
the world. To fairly evaluate FPL against the baselines, we have kept users with more than
20 interactions1. Moreover, we have split the datasets by adopting a realistic temporal hold-
out 80-20 splitting on a per-user basis (Gunawardana & Shani, 2015; Anelli et al., 2019b).
The resulting training and test sets have been used with all the methods in comparison,
including the state-of-the-art algorithms. Table 1 shows the characteristics of the resulting
training sets adopted in the experiments.

5.2 Collaborative filtering baselines

To evaluate the efficacy of FPL, we have conducted the experiments by considering
non-personalized methods (random and most popular recommendation), and different rec-
ommendation approaches, including the centralized BPR-MF implementation (Rendle
et al., 2009), User-kNN and Item-kNN (Koren, 2010), VAE (Liang et al., 2018), and
FCF (Ammad-ud-din et al., 2019), which is, to date, the only federated recommendation
approach based on MF2. Following Dacrema et al. (2019), we considered only VAE as
representative of the neural approaches.

To evaluate the impact of exploiting only a partial user feedback on recommendation
accuracy, we have evaluated different values of π in [0.0, 1.0] with step 0.1, with π = 0.0
meaning that u is not sharing any positive feedback with the server, and π = 1.0 meaning

1The limitations of the Collaborative Filtering in a cold-start user setting are well-known in literature.
However, they are beyond the scope of this work.
2Since no source code is available, we implemented it from scratch and considered it in the reader’s interest.
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that u is sharing the updates on all positive items. Hence, we have considered four different
configurations regarding computation and communication:

– sFPL: it reproduces the centralized stochastic learning, where the central model is
updated sequentially; thus, we set |U−| = 1 to involve just one random client per round,
and it extracts solely one triple (u, i, j) from its dataset (T = 1) for the training phase;

– sFPL+: we increase client local computation by raising to X+
|U | the number of triples T

extracted from Ku by each client involved in the round of communication;
– pFPL: we enable parallelism by involving all clients in each round of communication

(U− = U ) and we keep T = 1;
– pFPL+: we extend pFPL by letting each client sample T = X+

|U | triples from Ku; the

rationale is that the overall training samples are exactly X+, as in centralized BPR-MF.

Rendle et al. (2009) suggest to set the number of triples used for training in one epoch
of BPR to X+. This corresponds to the number of total number of positive interactions in
the system. Therefore, the federated training is comparable to BPR when X+ optimization
steps are performed. To this extent, we introduce the number of rounds of communication
per epoch (rpe). Consequently, FPL computation after rpe rounds is comparable to one
epoch of centralized BPR when |U−| · T · rpe = X+. This results in rpe = X+ for sFPL,
rpe = |U | for sFPL+, rpe = X+

|U | for pFPL, and rpe = 1 for pFPL+.

5.3 Reproducibility

For what regards the splitting strategy, we have adopted a temporal hold-out 80/20 to sep-
arate our datasets in training and test set. Moreover, to find the most promising learning rate
α, we have further split the training set, adopting a temporal hold-out 80-20 strategy on a
user basis to extract her validation set. User-kNN and Item-kNN have been experimented
for k ∈ {10, 20, ..., 10} considering Cosine Vector Similarity. VAE has been trained by
considering three autoencoder topologies, with the following number of neurons per layer:
200-100-200, 300-100-300, 600-200-600. We have chosen candidate models by considering
the best models after training for 50, 100, and 200 epochs, respectively. For the factor-
ization models, we have performed a grid search in BPR-MF for α ∈ {0.005, 0.05, 0.5}
varying the number of latent factors in {10, 20, 50}. Then, to ensure a fair comparison,
we have exploited the same learning rate and number of latent factors to train FPL and
FCF, and we explored the models in the range of {10, . . . , 50} iterations. We have set
user- and positive item-regularization parameter to 1

20 of the learning rate. The negative

item-regularization parameter is 1
200 of the learning rate, as suggested in mymedialite3

implementation as well as by Anelli et al. (2019). We made the implementation of FPL
publicly available4. Moreover, it will be soon integrated into the reproducibility framework
Elliot (Anelli et al., 2021).

5.4 Evaluationmetrics

The RQs (see Section 1) cover a broad spectrum of different recommendation dimensions.
To this end, we have decided to measure several metrics to evaluate the approaches under
the different perspectives.

3http://www.mymedialite.net/
4https://split.to/sisinflab-fpl

http://www.mymedialite.net/
https://split.to/sisinflab-fpl
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Accuracy The accuracy of the models is measured by exploiting Precision (P @N ) and
Recall (R@N ). They respectively represent, for each user, the proportion of relevant
recommended items in the recommendation list, and the fraction of relevant items that
have been altogether suggested. We have assessed the statistical significance of results
by adopting Student’s paired T-test considering p-values < 0.055.

Beyond-Accuracy To measure the diversity of recommendations, we have measured the
Item Coverage (IC@N ), and the Gini Index (G@N ). IC provides the number of diverse
items recommended to users. It also conveys the sense of the degree of personalization
(Adomavicius & Kwon, 2012). Gini (G) is a metric about distributional inequality. It
measures how unequally different items a RS provides users with Castells et al. (2015). In
the formulation adopted (Gunawardana & Shani, 2015), a higher value of G corresponds
to higher personalization.

Fairness The problem of unfair outputs in machine learning applications is well studied
(Bozdag, 2013; Dwork et al., 2011) and also it has been extended to recommender sys-
tems (Mansoury et al., 2019). In detail, in this work, we check whether items belonging
to specific groups have equal chance to be shown in the recommended lists. In order to do
that, we measure Bias Disparity (BD@N ) (Mansoury et al., 2019) for groups of items.
With this metric we quantify, for each category of items, the devation of the proposed
recommendations from the initial dataset bias.

6 Results and discussion

In this Section, we focus on the different experiments conducted to explore the dimensions
covered by the Research Questions (see Section 1). First, to position FPL with respect to
the baselines, we analyze the accuracy, beyond-accuracy, and bias disparity of the recom-
mendations. Once the analysis is completed, we investigate the impact of communication
costs, and we study the multi-objective optimization of maximizing the accuracy while
minimizing the communication costs. To this extent, we have explored the Pareto frontier,
considering the two different dimensions.

6.1 Recommendation accuracy

To answer RQ1, we want to assess whether it is possible to obtain a recommendation per-
formance comparable to a centralized pair-wise learning approach while allowing the users
to control their data. In this respect, Table 2 shows the accuracy and diversity results of
the comparison between the state-of-the-art baselines and the four configurations of FPL
presented in Section 5. By focusing on accuracy metrics, we may notice that VAE outper-
forms the other approaches in the three datasets. However, who is familiar with VAE knows
that, since it restricts training data by applying k-core, it does not always produce recom-
mendations for all the users. With regards to User-kNN, we notice that it outperforms all
the other approaches in the three datasets, while the performance of Item-kNN and BPR-
MF approximately settle in the same range of values. This is possibly due to the user-item
ratio (Adomavicius & Zhang, 2012), that favors the user-based schemes (see Table 1).

Moreover, it is important to investigate the differences of FPL with respect to BPR-
MF, which is a pair-wise centralized approach, being FPL the first federated pair-wise
recommender based on a factorization model. The performance of BPR-MF against FPL, in

5The complete results are available in the implementation repository.



Journal of Intelligent Information Systems

Table 2 Results of accuracy metrics for baselines and FPL on the three datasets. For each configuration of
FPL and for each dataset, the experiment with the best π is shown (see the bottom part for details). For all
metrics, the greater the better. Among federated algorithms, the best performance is in boldface

Brazil Canada Italy

P@10 R@10 P@10 R@10 P@10 R@10

Centralized Random 0.00013 0.00015 0.00030 0.00035 0.00030 0.00029

Top-Pop 0.01909 0.02375 0.04239 0.04679 0.04634 0.05506

User-kNN 0.10600 0.13480 0.07639 0.07533 0.06881 0.07833

Item-kNN 0.07716 0.09607 0.04006 0.03881 0.04663 0.05356

VAE * 0.10320 0.13153 0.06060 0.06317 0.10421 0.21324

BPR-MF 0.07702 0.09494 0.03694 0.03650 0.04560 0.05458

Federated FCF 0.03089 0.03749 0.03724 0.03836 0.03126 0.03708

sFPL ** 0.07757 0.09581 0.04515 0.04550 0.04701 0.05600

sFPL+ ** 0.08682 0.11004 0.05701 0.05665 0.05595 0.06229

pFPL ** 0.07771 0.09582 0.04582 0.04637 0.04642 0.05465

pFPL+ ** 0.08733 0.11085 0.05761 0.05755 0.05565 0.06291

*For Italy, VAE does not produce recommendations for all the users; thus, we followed the weighting scheme
proposed in prior literature (Mesas & Bellogı́n, 2017)
**Best π obtained for each the proposed FPL variations across three countries (Brazil, Canada, and Italy)
are: sFPL = (0.5, 0.1, 0.4), sFPL+ = (0.9, 0.4, 0.2), pFPL = (0.8, 0.1, 1), pFPL+ = (0.8, 0.3, 0.1)

the configuration sFPL, shows how precision and recall in sFPL are slightly outperforming
BPR-MF, while achieving very similar diversity values. The consideration that the perfor-
mance is comparable is surprising since the two methods share the sequential training, but
sFPL exploits a π reduced to 0.5, 0.1, and 0.4, respectively, for Brazil, Canada, and Italy.
This behavior is more evident in Fig. 2, where the harmonic mean between Precision and
Recall (F1) is plotted for different values of π . If we look at the dark blue line with squares,
we may observe how the best result does not correspond to π = 1. Compared to FCF, FPL
generally behaves better and preserves privacy to a greater extent, since sharing gradients
of all rated items in FCF can result in a data leak (Chai et al., 2019).

In the last three rows of Table 2, we explore an increasing of the local computa-
tion (sFPL+), or an increased parallelism (pFPL), or a combination of both (pFPL+). In
detail, we observe that sFPL+ takes advantage of the increased local computation, and FPL
significantly outperforms BPR-MF for the three datasets; for instance, for Canada, we

Fig. 2 F1 performance at different values of π in the range [0.1, 1]. The colors represent the four config-
urations: blue squares refer to sFPL, green squares to sFPL+, blue circles to pFPL, and green circles to
pFPL+



Journal of Intelligent Information Systems

observe an interesting increase in precision. Instead, when comparing pFPL with sFPL, we
observe that the increased parallelism does not affect the performance significantly. Even
then, the increased local computation boosts the Precision and Recall performance, up to
24% for precision in the Italy dataset. The results confirm RQ1, since “the proposed sys-
tem can generate recommendations with a quality that is comparable with the centralized
pair-wise learning approach. Moreover, the increased local computation causes a consid-
erable improvement in the accuracy of recommendations. On the other side, the training
parallelism does not significantly affects results. Finally, when the local computation is
combined with parallelism, the results show a further improvement”.

To answer RQ2, we varied π in the range [0.1, . . . , 1.0] to assess how removal of the
updates for consumed items affects the final recommendation accuracy, and we plotted the
accuracy performance by considering F1 in Fig. 2. As previously observed, the best perfor-
mance rarely corresponds to π = 1. On the contrary, a general trend can be observed: the
training reaches a peak for a certain value of π — depending on the dataset —, and then
the system performance decays in accuracy when increasing the value of π . In rare cases,
e.g., sFPL, and pFPL for Brazil dataset, the decay is absent, but results that are very close
for different values of π . The general behavior suggests that the system learning exploits
the updates of positive items to absorb information about popularity. This consideration is
coherent with the mathematical formulation of the learning procedure, and it is also sup-
ported by the observation that for Canada and Italy FPL reaches the peak before with respect
to Brazil. Indeed, Canada and Italy datasets are less sparse than Brazil, and the increase of
information about positive items may lead to push up too much the popular items (this is
a characteristic of pair-wise learning), while the same behavior in Brazil can be observed
for values of π very close to 1. The same mathematical background, for sFPL+ and pFPL+
with Brazil dataset, which is very sparse, explains the higher value of π needed to reach
good performance. Here, the lack of positive information with a vast catalog of items, con-
fuses the training that cannot exploit item popularity. Now, we can positively answer to
RQ2: user can receive high-quality recommendations also when she decides to disclose a
small amount of her sensitive data. However, it should be noted that the more the dataset is
sparse, the more the amount of sensitive data should be large.

6.2 Accuracy or diversity: exploring the trade-off between precision and item
coverage

In Table 3, we have depicted the diversity metrics results of each experiment, i.e., item cov-
erage, and Gini Index. What immediately catches our attention is an increase in IC and
Gini in accord with the increase of local computation. In this sense, FPL shows a consis-
tent prominence on BPR-MF. This performance is motivated by mere observation of the
algorithm. By increasing local computation, each client compares each positive item with a
significantly larger number of negative samples (i.e., wider spread). We have also explored
the values of IC against the values of precision for each dataset and for each configuration
while varying the parameter π . In Fig. 3, we plot these values by considering increasing
π in the direction of the arrows. The plots unveil that, for Canada and Italy, by increasing
the local computation (sFPL+ and pFPL+), the plots develop rightwards, i.e., a signifi-
cant IC increase. Although such an increase may lead to low precision (as in the random
recommender), we observe that the same configurations also push up the value of preci-
sion, so that the green points are positioned at the top of the plots. We also note that the
value of π affects more IC in configurations with high computation than those with low
computation. However, while IC seems to increase when increasing π , precision follows the
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Table 3 Results of beyond-accuracy metrics for baselines and FPL on the three datasets. For each configu-
ration of FPL and for each dataset, the experiment with the best π is shown (see the bottom part for details).
For all metrics, the greater the better. Among federated algorithms, the best performance is in boldface.

Brazil Canada Italy

IC@10 G@10 IC@10 G@10 IC@10 G@10

Centralized Random 46120 0.70946 10815 0.26809 10478 0.28914

Top-Pop 19 0.00020 18 0.00030 19 0.00035

User-kNN 3083 0.01159 609 0.00321 577 0.00282

Item-kNN 16535 0.07449 4393 0.05404 3241 0.03293

VAE * 5503 0.02117 1044 0.00652 165 0.02336

BPR-MF 2552 0.00756 1216 0.00998 19 0.00036

Federated FCF 911 0.00095 504 0.00174 403 0.00158

sFPL ** 1581 0.00561 451 0.00243 18 0.00036

sFPL+ ** 5200 0.01449 1510 0.01259 932 0.00789

pFPL ** 2114 0.00638 425 0.00213 96 0.00056

pFPL+ ** 3820 0.01106 1214 0.00981 936 0.00725

* For Italy, VAE does not produce recommendations for all the users; thus, we followed the weighting scheme
proposed in prior literature (Mesas & Bellogı́n, 2017)

** Best π obtained for each the proposed FPL variations across three countries (Brazil, Canada, and Italy)
are: sFPL = (0.5, 0.1, 0.4), sFPL+ = (0.9, 0.4, 0.2), pFPL = (0.8, 0.1, 1), pFPL+ = (0.8, 0.3, 0.1)

previously described behavior. At first glance, Brazil seems to behave differently from the
other datasets. Even here, we may discern a better combination of IC and precision for con-
figurations with high computation. FPL needs to reach a higher value of π to witness a high
precision and high IC. This behavior was also evident in the accuracy analysis, considering
the different values of π .

6.3 Accuracy vs communication cost: a multi-objective analysis

In a FL setting, communication rounds between clients and server play a crucial role. In
fact, a large amount of information exchanged might hinder the effectiveness of the overall
approach as it requires high network costs. This perspective has led us to define a metric, the
Communication Cost per Epoch (CCE), which calculates communication costs that each

Fig. 3 Item Coverage (IC@10) versus Precision (P@10) with cutoff 10. The colors represent the four con-
figurations: blue squares refer to sFPL, green squares to sFPL+, blue circles to pFPL, and green circles to
pFPL+. The white points denote π = 1.0 to specify the direction of increasing π
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particular FPL configuration requires as the number of bidirectionally exchanged vectors.
Let T be the number of sent updates for non-consumed items and πT the number of sent
updates for consumed items. For rpe rounds the server establishes a communication with
|U−| clients, sending to each of them |I| vectors and receiving from each of them T (1 +
π) update vectors. Therefore, CCE is estimated as CCE = rpe · |U−| · (|I| + T (1 +
π)). Given these definitions, in this section, we want to analyze the effects of the different
configurations and π values on the communication cost.

For convenience, we focus the analysis on Brazil, the biggest and sparsest dataset. In
Table 4, we show the values of precision and communication cost for each FPL config-
uration and each value of π . The Total Communication Cost (T CC) is computed as the
product between CCE and the number of epochs needed to reach such precision value. At
a first glance, it is noteworthy how, within a specific configuration, the value of π does not
affect significantly the total communication cost, while it highly impacts on the best preci-
sion value. For each configuration, we plot in Fig 4 the best values of precision (in boldface
in Table 4) against their T CC. Here, the total communication cost should be minimized,
while the precision should be maximized. The optimal solution in terms of multi-objective
optimization corresponds to the pFPL+ configuration. Instead, in absence of parallelism,
we witness a much higher communication cost for reaching the best precision. Moreover,
it is interesting how sFPL and pFPL are perfectly overlapping both in terms of accu-
racy (as also confirmed by the previous analyses) and in terms of communication costs.
However, increasing the local computation in a parallel setting make FPL to reach the best
performance with the minimum overall communication cost.

The multi-objective analysis between communication cost and accuracy may help the
designer in providing the best setup for the federation of clients. Here, the analysis suggests
holding high parallelism configurations with high local computation as the set of optimal
settings. The experiment shows that in FPL there is no need for sacrificing accuracy for
communication costs. Instead, the user can freely choose the value of π without affect-
ing the communication costs. In order to answer the RQ3 we can state that deciding to
limit the communication costs does not particularly affect the recommendation accuracy.

Table 4 Total Communication Cost (×10−12) (T CC) versus Precision (P@10) on Brazil dataset

sFPL sFPL+ pFPL pFPL+

π T CC P @10 T CC P @10 T CC P @10 T CC P @10

0.1 1.27623 0.06961 1.41913 0.03347 1.27623 0.07026 0.99339 0.04358

0.2 1.27623 0.07327 1.41924 0.05241 1.27623 0.07366 0.99347 0.05022

0.3 1.27624 0.07551 1.41934 0.06269 1.27624 0.07497 0.99354 0.05598

0.4 1.27624 0.07686 1.41944 0.06949 1.27624 0.07582 0.99361 0.06382

0.5 1.27624 0.07757 1.41955 0.07298 1.27624 0.07671 0.99368 0.07648

0.6 1.27624 0.07733 1.41965 0.08121 1.27624 0.07723 0.99375 0.08247

0.7 1.27625 0.07714 1.41975 0.08506 1.27625 0.07758 0.99383 0.08590

0.8 1.27625 0.07730 1.41985 0.08660 1.27625 0.07771 0.99390 0.08733

0.9 1.27625 0.07724 1.41996 0.08682 1.27625 0.07726 0.99397 0.08699

1.0 1.27625 0.07702 1.42006 0.08523 1.27625 0.07703 0.99404 0.08582

T CC is the product between the value of CCE and the actual number of epochs needed to obtain the best
accuracy value. For each configuration, the best precision value is in boldface and reported in the summary
graph in Fig. 4
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Fig. 4 Total Communication Cost (×10−12) compared to Precision (P@10) on Brazil dataset. The colors
represents the four configurations: dark blue is sFPL, dark green is sFPL+, light blue is pFPL, light green is
pFPL+. For each configuration, the best accuracy performance is shown. The top-left corner of the plot is the
best trade-off between accuracy and communication costs

Overall, FPL shows its best trade-off between communication costs and accuracy when
both parallelism and high local computation are set.

6.4 Bias disparity in FPL

When depriving the recommender of a part of the user’s feedback, one of the biggest con-
cerns is the potential bias shift (Burke et al., 2017). Bias analysis, and fairness are gaining
momentum in the last years (Deldjoo et al., 2021), they unveil several essential aspects of
the recommenders’ behavior. To explore what happens the category biases in the different
configurations and values of π , we measure the bias disparity (BD) in recommendation
lists for the categories of the venues. This metric analyzes how much the output of a recom-
mendation algorithm deviates the natural propensity of the users for particular categories
of items towards other categories. Notably, for a category of items C, BD is defined as it
follows:

BD(C) = BR(C) − BT (C)

BT (C)
, (10)

where BT (C) is the source bias on category C, i.e., how much users were biased towards
category C in the training set, and BR(C) is the bias on C in recommendation lists.

Table 5 shows the source bias value BT (Mansoury et al., 2019) for the different cate-
gories in training data, with a value above 1 denoting a higher susceptibility to choose the
category items. Table 6 shows the results in terms of Bias Disparity (BD) for FPL and the
other baselines. Here, the closer to 0, the closer to the initial bias. As expected, Top-Pop

Table 5 Bias values BT (Mansoury et al., 2019) of population on the different categories in training
data (A&E: Arts & Entertainment, C&U: College & University, NS: Nightlife Spot, O&R: Outdoors &
Recreation, P&OP: Professional & Other Places, S&S: Shop & Service, T&T: Travel & Transport)

Dataset A&E C&U Food NS O&R P&OP Res. S&S T&T

Brazil 1.4949 0.6289 1.1024 1.3286 1.1340 0.6424 0.5202 0.8314 1.3699

Canada 1.7224 0.8310 1.0879 1.6594 0.9719 0.6610 0.4134 0.8087 1.2328

Italy 1.4130 0.8221 0.9317 1.3559 1.3292 0.7868 0.4171 0.8482 1.2678
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Table 6 Results of recommendation bias disparity for each category in Brazil dataset (see Table 1) for
baselines and FPL

A&E C&U Food NS O&R P&OP Res. S&S T&T

Centralized Random −0.325 0.559 −0.080 −0.245 −0.143 0.549 0.911 0.203 −0.273

Top-Pop −1.000 −1.000 −0.302 −1.000 −0.999 −1.000 −1.000 −1.000 6.660

User-kNN 0.445 −0.832 0.261 −0.213 0.162 −0.842 −0.969 −0.431 0.621

Item-kNN 0.346 0.140 0.068 −0.102 0.153 −0.347 −0.381 −0.227 0.083

VAE 0.393 −0.723 0.223 −0.315 0.194 −0.776 −0.911 −0.310 0.572

BPR-MF 0.301 −0.712 0.232 −0.710 0.142 −0.758 −0.992 −0.434 1.165

Federated FCF −0.464 −0.968 0.687 −0.910 0.135 −0.960 −0.994 −0.946 1.239

sFPL 0.272 −0.738 0.263 −0.756 0.161 −0.814 −0.997 −0.368 1.072

sFPL+ 0.311 −0.675 0.160 −0.396 0.278 −0.806 -0.903 -0.291 0.812

pFPL 0.253 −0.813 0.218 −0.613 0.143 -0.739 −0.992 −0.479 1.239

pFPL+ 0.154 -0.566 0.190 -0.351 0.345 −0.764 −0.913 −0.410 0.778

For each configuration of FPL and for each dataset, the experiment with the best π is shown. The closer to 0
the better. Among federated algorithms, the best performance is in boldface

changed the recommendation towards T&T, which is the most popular category in the train-
ing set. By focusing on FPL, we may notice that it bias positively and negatively the same
categories of the other state-of-the-art algorithms. Notably, it particularly pushes the bias of
recommendation towards popular categories (e.g., A&E, Food, T&T), while it emphasizes
the unpopularity of specific categories — above all C&U , P&OP, Residence —. This is
probably due to the pair-wise nature of the approach, which works by iteratively increasing
the difference values between enjoyed items and the others (the same behavior is evident
for BPR-MF). The Bias Disparity analysis helps to answer RQ4. Hence, we draw the fol-
lowing consideration: “the proposed system generates recommendations that are biased
to the initial user preferences since it emphasizes the differences between consumed and
non-consumed items. This behavior is also coherent with the recommendations of the other
state-of-the-art algorithms”.

7 Conclusion and future work

This work proposes Federated Pair-wise Learning (FPL), a novel federated learning frame-
work that exploits pair-wise learning for factorization models in a recommendation scenario.
The model leaves the user-specific information of the original factorization model in the
clients’ devices so that a user may be entirely in control of her sensitive data and could share
no positive feedback with the server. The framework can be envisioned as a general factor-
ization model in which clients can tune the amount of information shared among devices. To
analyze the degree of accuracy, the diversity of the recommendation results, we have con-
ducted an extensive experimental evaluation. However, even a vast evaluation is not enough
to gain a more in-depth understanding of how FPL operates. Therefore, we have extended
the evaluation to investigate the optimal trade-off between accuracy, and amount of shared
transactions. Afterwards, the study provides a theoretical analysis of the privacy issues of
FPL, the details of computational complexity, and an investigation on communication costs
considering the different operational modes. Finally, the work analyzes the shift of the
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original data bias when the system is fed with partial information. To the best of our knowl-
edge, it is one of the first attempts to understand how a federated learning approach impacts
the fairness of the overall system. The proposed model shows performance comparable with
several state-of-the-art baselines and the classic centralized factorization model with pair-
wise learning. Interestingly, indeed, clients can share a small portion of their data with the
server and still receive high-performance recommendations. We believe that the proposed
approach represents the joining link between federated matrix factorization and the modern
recommendation systems that optimize the item ranking instead of the prediction error. In
the near future, it would be interesting to investigate the behavior of FPL in new privacy
settings, examine the effects of each user freely choosing which specific data to keep pri-
vate, and extend the experimental analysis to other datasets and domains. Finally, we think
that federated learning to rank approach, along with a rigorous analysis of the dimensions
involved in the recommendation process, may open the doors to a new class of ubiquitous
recommendation engines.
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