A Web Crowdsourcing Platform
for Territorial Control in Smart Cities

: 1[0000—0002—6827—2585 : < 1,2[0000—0001 —6413—9886
Andrea Pazienzall I, Domenico Loful2! I

Giampaolo Flacel[0000700037364879656]’ Marco Salzedol[0000700027826176831]7
Pietro 1\]0‘1161101[0000700037388179188]7 Eugenio Di SCiaSCiOQ [0000700027548479945]7
and Felice Vitulan01[0000*0002*6059*8177]

! Innovation Lab, Exprivia S.p.A. — Via A. Olivetti 11, Molfetta (I-70056), Italy
{andrea.pazienza, domenico.lofu, giampaolo.flace, marco.salzedo,
pietro.noviello, felice.vitulano}@exprivia.com
2 Polytechnic University of Bari — Via E. Orabona 4, Bari (I-70125), Italy
{domenico.lofu, eugenio.disciascio}@poliba.it

Abstract. Nowadays citizens engage with smart city ecosystems in sev-
eral ways using smartphones, mobile devices, connected cars, and drones.
Pairing devices and data with a city’s infrastructure and services can
improve sustainability and achieve an improvement in awareness and
territorial control. Communities can improve energy distribution and
decrease traffic congestion with the help of IoT technologies. To sup-
port and streamline such a process, in this paper we introduce a Web
crowdsourcing platform as a Common Operational Picture dashboard
to interoperate with smart devices, collect urban data from them, and
monitor the city in real-time. Its application to the Metropolitan City of
Bari is presented and discussed.

Keywords: Web Crowdsourcing - COP - Smart City.

1 Introduction

Crowdsourcing is based on the concept of involving the participation of a large
number of individuals to solve certain problems together. Web crowdsourcing
provides a new model for solving problems by gathering data also from inter-
active objects. The Internet of Things (IoT) offers services in almost all daily
fields through advanced connectivity of devices, systems, and services, particu-
larly smart applications. Hence, the idea of exploiting the Web crowdsourcing
concept to smart city projects may help in fostering the activity of territorial
control and monitoring by collecting data from citizens, including feedback and
evaluation about urban services, city functioning, quality of life, as well as im-
provement suggestions. In particular, taking into consideration also autonomous
devices, in particular Unmanned Aerial Vehicles (UAVs) such as drones, and
self-driving vehicles, their IoT characteristics can be exploited to collect data
from a limited urban area while achieving territorial control and obtaining an
improved urban situational awareness.



2 A. Pazienza et al.

In this context, a Common Operational Picture (COP) is defined as a shared
representation of widespread and general knowledge concerning operation. Sit-
uational Awareness (SA) is at the basis of decision processes to maintain and
understand what is happening in a certain situation and leverage this informa-
tion to avoid or mitigate risks. SA can thus be considered as a purposeful act
of an entity of a comprehensive system. This act directs interest to the relative
combination of circumstances and entities that have aims and goals in common
contexts at a certain moment.

In this work, we present a smart city crowdsourcing Web platform capable
of monitoring the territory in near real-time, involving the creation of COP-
based dashboards, able to collect data from a number of heterogeneous sources.
Such data can be processed and analyzed to show geo-located information on a
dedicated interactive map. In particular, we are interested in the geo-tracking
of moving objects, and the real-time consultation of the data received and their
trend over time. Furthermore, from a SA perspective, this solution may help
to understand the perception of events, especially in critical ones. For example,
exceeding the maximum speed of a vehicle inside the city or their presence in
forbidden areas, will have to activate appropriate alarms or signaling mechanisms
that will be managed by city authorities.

The remainder of the paper is structured as follows. Section 2 provides an
overview of related work and technologies which were investigated as background
knowledge. The next section presents our proposal, i.e. a Web crowdsourcing
platform, including its functional architecture and the employed technological
stack. Section 4 describes a possible scenario of territorial control by monitoring
a smart city by means of our Web crowdsourcing platform. Finally, Section 5
concludes the paper, with an outline of future work.

2 Related Work

One of the steps towards SA is to make a transition into Smart Cities. Here, [oT
play an important role to gather relevant information from the city, citizens,
and the corresponding communication networks that transfer the information
in real-time. In this respect, the works in [10, 7] proposed solution for a smart
city mobility monitoring platform based on crowdsourcing mobile solutions to
gather and provide open traffic data, supporting an ecosystem for collaborative
development of new Intelligent Transportation Systems applications.

Other works, such as in [6,8, 3], investigated the role of IoT in smart city
projects, analysing the evolution of research in the field of the smart city and
related technologies, including crowdsourcing.

Since the popularity of the crowdsourcing for performing various tasks online
increased significantly in the past few years, several frameworks and Web-based
solutions have been provided, witnessing the need for tools to develop and run
subjective quality assessment experiments [4, 9]. Authors in [5] proposed a frame-
work to enable a worldwide crowdsourcing approach to the generation of OBD-II
data, similarly to OpenStreetMap for cartography.



A Web Crowdsourcing Platform for Territorial Control in Smart Cities 3

Database

sink
MQTT Broker

send data
Devices stream stream
Message Broker

publish

Rule Engine

API Gateway

stream

notify authentication
Web Application Web Service S5O Auth

T authentication / registration I

Fig. 1. Architectural diagram of the Web crowdsourcing platform.

In this landscape, COP-based solutions aiming at achieving situational aware-
ness scenarios have been proposed, devoted to maintaining an understanding of
what’s going on around people at every moment and using that information to
mitigate risks [1, 2].

3 Crowdsourcing Data from Smart Autonomous Devices

This section presents the functional architecture of the Web crowdsourcing plat-
fom, paying attention to the flow of data, ranging from the collection in the field
to the persistence and use of them on the system. In Figure 1 the architectural
diagram is shown.

The intelligent devices for data collection in the field are enabled to trans-
mit data, after authentication, using the protocols in two ways, namely MQTT
(Message Queuing Telemetry Transport) and REST (REpresentational State
Transfer). The devices that support the transmission of data via MQTT, convey
them into an MQTT broker on specific topics for each type of device. If the
devices do not support the MQTT communication protocol, the transmission
of data is allowed by making requests to specific REST API endpoints. In this
case, a massive transmission of data is also allowed. The internal data manage-
ment of the system is mediated by a Message Broker (MB), which acts as a
communication bus common to all system components. In the MB the data are
merged into two streams based on the type of information, called tracking and
events respectively. The tracking messages correspond to those sent by smart
devices, generally made up of information such as: instant time of detection, val-
ues detected by sensors and the current geographical position. The APl Gateway
component, once received, publishes them on the topic tracking of the MB. In-
stead, the messages arriving on the MQTT broker are consumed and inserted in
the MB in the same way. Notifications and alerts are generated by the Rule En-
gine component, which has the task of applying user-defined rules and controls



4 A. Pazienza et al.

Web Application Web Service
(backend)

Q& =g

Open connection ‘ Apache Kafka MongoDB 5
—

v\\‘}\
&
8

e © EMax

BN

HTML

Server Sent Events

Event

woans

@ Track
Simulator
— g ﬁﬂ'

Intelligent Devices

API Gateway
A
<

Fig. 2. Data Flow of the Crowdsourcing Architecture

Close connection

to the data it receives in streaming from the MB topic tracking. Examples of
rules may concern the exceeding of threshold values, access to forbidden areas,
exit from geofence areas, and so on. Any data in transit on the topics of the MB
is persistent on a time-series database within tables or collections. The choice of
the type of database is dictated by the need for efficient reading queries over time
intervals. A Single Sign-On (SSO) solution is used for managing user roles and
data, system authentication, and for the use of services such as password reg-
istration and recovery. The Web Service component has back-end functionality
and exposes all the services necessary for the Web application that the end-user
will use. The main services concern the fetch of context information for initial-
ization purposes by querying the database, and the presentation of the data in
near real-time from the MB. A Web Application allows the end-user to access
all the tools of the COP such as the geo-localized display of information and
events in order to be able to reconstruct in any moment the SA of the monitored
territory.

3.1 Technological Stack

As shown in Figure 2, moving objects send data to the platform via MQTT or
HTTP protocol. In the first case, the messages are published on specific topics
present in the MQTT broker, implemented with EMQ-X?2. Subsequently, the
MB, represented by Apache Kafka*, uses a special connector to consume them by
collecting them in more generic topics (e.g., tracks). In the second case, instead,
the intelligent devices send data by making HTTP requests to specific REST API
implemented in the APl Gateway. The latter, once the data has been received,
in sequence or in batches, publishes them directly on specific Kafka topics. At
this point, once the messages arrive on the Kafka topics, they are persisted

3 EMQ-X: https://www.emqx.io/
4 Apache Kafka: https://kafka.apache.org/



A Web Crowdsourcing Platform for Territorial Control in Smart Cities 5

Kafka Topic: “tracks” Kafka Topic: “events”

% Stream & Produce % Stream
Rule Engine COP-Backend

HTML

Sync
ue puas

Server Sent Events

abessauw Juana

D>}

TS Collection: “events”

Fig. 3. Rule Engine diagram for the management of alarm and notification events.

on the MongoDB 5 database®, storing their content in the form of documents
within specific timeseries collections. At the same time, the Web Service assumes
the role of consumer of the messages present in the Kafka topics, in order to
serialize them and transmit them in near real-time through notifications to the
Web Application, using the Server Sent Event (SSE) protocol.

The generation of notifications (e.g., alarms), as shown in Figure 3, is taken
over by the Rule Engine, which consumes the tracking messages present on
Kafka in order to subject them to certain rules hand-coded, such as simple
conditions on threshold values or violation of constraints on geofence areas. In
the latter case, a GIS library is used which is part of the Mapbox SDK and is
able to verify whether or not a geographical point (i.e., the actual position of
the device) belongs to a geographical area delimited by a polygon. In particular,
keeping track in memory of the last known positions for each monitored device,
it is possible to trace the input and output of devices within these areas. If a
rule is triggered, an event message is generated which can be of the type alarm
or information, and finally published on the Kafka topic events. At this point,
through a Kafka connector of type MongoDB SinkConnector, once the messages
in the topic are received, they are synchronized on the database in the time
series collection events. Finally, the Web Service component subscribes to the
topic events consuming the messages and then sending them to the front-end via
the SSE protocol. More precisely, the SseEmitter component of Spring® is used
to create an SSE channel dedicated to events, accessible after authentication.
Finally, the Web Application implemented with Angular 127, subscribes to this
channel. User authentication is managed through SSO using Keycloak®, which
is also entrusted with saving user data, and registering and managing accounts
for them. The interaction between the Web Application user and the SSO is
mediated by a back-end service called COP-Auth which acts as middle-ware.

5 MongoDB: https://www.mongodb.com/
® Spring: https://spring.io/

" Angular: https://angular.io/

8 Keycloak: https://www.keycloak.org/






