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Abstract
The realm of music composition, augmented by technological advancements such as computers and related equipment, has
undergone significant evolution since the 1970s. In the field algorithmic composition, however, the incorporation of artificial
intelligence (AI) in sound generation and combination has been limited. Existing approaches predominantly emphasize sound
synthesis techniques, with no music composition systems currently employing Nicolas Slonimsky’s theoretical framework.
This article introduce NeuralPMG, a computer-assisted polyphonic music generation framework based on a Leap Motion
(LM) device, machine learning (ML) algorithms, and brain-computer interface (BCI).ML algorithms are employed to classify
user’s mental states into two categories: focused and relaxed. Interaction with the LM device allows users to define a melodic
pattern, which is elaborated in conjunction with the user’s mental state as detected by the BCI to generate polyphonic
music. NeuralPMG was evaluated through a user study that involved 19 students of Electronic Music Laboratory at a music
conservatory, all of whom are active in the music composition field. The study encompassed a comprehensive analysis
of participant interaction with NeuralPMG. The compositions they created during the study were also evaluated by two
domain experts who addressed their aesthetics, innovativeness, elaboration level, practical applicability, and emotional impact.
The findings indicate that NeuralPMG represents a promising tool, offering a simplified and expedited approach to music
composition, and thus represents a valuable contribution to the field of algorithmic music composition.
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Introduction

In recent years, there has been a significant rise in the usage
of technology inmusic composition, markedly advancing the
field of algorithmic music composition (AMC). The roots
of AMC can be traced back to the works of composers
such as F. Bach Haydn and W. A. Mozart, who pioneered
the creation of polyphonic structures through probabilistic
games [1–3]. Nowadays, AMC demonstrates vast potentials
in various areas, ranging from the application of cycle the-
ories and permutations of musical intervals, to the use of
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stochastic processes in the generation of music [4]. Within
the realms of harmony and composition, AMC techniques
have proven invaluable for generating extensive collections
of sound material [5].

Two notable technologies supporting AMC are brain-
computer interfaces (BCIs) and Leap Motion (LM). BCIs
are computer-based systems capable to acquire, analyze,
and translate brain signals into real-time outputs, allowing
users to communicate and control functions independently
by muscle activity. The user’s intentions are discerned from
activity recorded by electrodes on the scalp or cortical sur-
face. The term “BCI” was first used by Jacques Vidal,
who in the 1970s developed a BCI system utilizing visual
evoked potentials [6]. Since then, significant advancements
in computer technology, artificial intelligence (AI), and neu-
roscience have facilitated the development and adoption,
in particular in the research field [7] of diverse low-cost
BCI systems, characterized by their affordability and qual-
ity of signal acquisition [8]. LM, on the other hand, is a
sensor-based input device adept at tracking hand and fin-
ger movements in a three-dimensional space. It employs
a blend of sophisticated optical sensors and algorithms,
enabling users to interact with digital environments through
intuitive gestures, thereby eliminating the need for tradi-
tional input devices like a mouse or keyboard [9]. Moreover,
integrating machine learning (ML) techniques enhances the
precision and effectiveness of brain-controlled applications.
Its efficacy is evident in various BCI applications, with
rapid advancements in ML prompting its extensive use in
monitoring, detection, classification, and other tasks. These
algorithms are vital for substantial progress toward human-
level AI, especially in BCIs, where ML techniques play a
critical in role in data analysis, extracting valuable insights
for targeted tasks [10].

Given the current limitations of BCI systems in compre-
hending complex brain activities, the integration of ML and
BCI technologies promises a revolution in understanding of
intricate brain signals and enhancing action recognition. BCI
and ML technologies hold large potential for electronic and
electroacoustic music composers, aiding in the exploration
of vast sound textures and composition techniques.

Managing music materials remains a challenge for com-
posers, for which N. Slonimsky’s treatise “Thesaurus of
Patterns and Melodic Scales” offers a promising solution.
Published in 1947, it outlines computing permutations of
notes around a reference interval, a concept explored by
many composers throughout music theory and harmony his-
tory, with the primary goal of managing all the possible
relationships between notes in a simple and autonomous
manner [11]. This complex endeavor involves various music
aspects, including note organization and rhythmic divisions.
According to a large body of literature on AMC, it is widely
recognized that music functions as a language interacting

with human emotions, yet it demands a solid foundation in
music composition methods by the composer (see for exam-
ple [12–16].

This paper presents a system utilizing diverse information
sources, such as electroencephalogram (EEG) signals and
hand movement data. It encodes this information using ML
algorithms for EEG signals and algorithmic processes based
on Slonimsky’s grammar for melodic profile and polyphony
generation. Our work aims to support composers to create
music polyphonies, assisting them in exploring all possible
melodic patterns using Slonimsky’s grammar, and artificial
intelligence-based methodologies and tools, as well as LM
and BCI devices.

The LM has been included in the system since each
melodic profile can be represented as a succession of points
in the two-dimensional space of the musical staff, with fin-
ger positions detected by LM corresponding to these points.
Joining these points mimics the graphical representation of
a musical melody.

For rhythmic value selection based on detected mental
states, the BCI is used. Furthermore, the dynamics of each
note in the polyphony are controlled by the power of Theta,
Alpha, andBeta frequency bands, reflecting the user’smental
conditions like activation, relaxation, and concentration [17].

Additionally, the proposed solution includes a graphical
user interface (GUI) providing continuous visual feedback
on the music generation process, including finger positions
detected by the LM device and the user’s mental state cap-
tured by the BCI. The GUI also displays the produced
polyphony in real-time and allow parameters adjustments.

The overall framework, named NeuralPMG, extends
beyond Slonimsky’s treatise by incorporating polyphony
generation techniques, thus contributing significantly to the
state of the art about computer-assisted music composition.

An evaluation study was conducted addressing various
perspective, including user experience (using the AttrakD-
iff questionnaire), creativity support (Creative Support Index
(CSI)), workload (Nasa-TLX), user engagement (User Enga-
gement Scale (UES)), emotional response (Self-Assessment
Manikin), participants’ self-assessment, and appreciation
of the generated polyphony. Additionally, two Maestros
analyzed the aesthetics, innovativeness, elaboration, usage
potential, and emotional capability of the polyphonies pro-
duced by participants. This article pioneers authors’ research
in using BCI, LM, and AI for AMC based on Slonimsky’s
theory, and, to the best of their knowledge, represents a novel
contribution to the AMC field.

The article is organized as follows. Section “Example
Scenario” describes typical usage scenario of the sys-
tem. Section“Related Work” discusses the related work.
Section“NeuralPMG Framework Architecture” describes
the overall NeuralPMG framework architecture. Section
“Polyphony Generation Process” illustrates the polyphony
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generation process, and describes in detail: (i) mental state
generation, (ii) melodic pattern generation, (iii) polyphony
generation, and (iv) NeuralPMG Engine, including the
implemented ML algorithms. Section“Evaluation Study”
describes the evaluation study. Section“Polyphony Assess-
ment by Music Experts” reports the assessment, performed
by two Maestros, of the polyphonies produced by study
participants involved in the study. Results of both the eval-
uation study and the Maestros’ assessment are discussed
in “Discussion” section. Concluding remarks are provided
in “Conclusions and Future Work” section. A “Glossary”
explaining some terms specific of the music domain is avail-
able before the References section.

Example Scenario

This section proposes a scenario depicting a key usage sit-
uation of NeuralPMG. Scenarios are commonly used in
human-computer interaction for “bringing requirements to
life” [18] since they provide, in a concrete narrative style, a
description of specific people performing work activities in
a specific work situation within a specific work context [19].

Tom is an expert music composer, who creates sound-
tracks for movies, advertisements, music videos, and audio-
visual setups, as well as more traditional twentieth-century
classical music. He frequently manages multiple composi-
tion projects in parallel and in different genres and styles,
each taking from a week to several months to complete. He
aspires to provide more complex compositions in the form
of an audio and musical score, suitable for performance with
virtual instruments or real music groups.

Tom needs to streamline the production process. He aims
to obtain semifinished pieces that he can later refine, modify,
or complete as desired. He is familiar with Nicolas Slonim-
sky’s theory, which enables him to experiment with various
generations of scales and melodic patterns. He can construct
polyphonies using sound organization grammar drawn from
contemporary composition methods, such as the permuta-
tion of notes, inversions, transpositions of musical phrases,
and variations in rhythmic values. Furthermore, Tom is well
acquainted with the rules of polyphonic and counterpoint
organization, which he uses to create tonal and post-tonal
musical compositions.

Tom does not wish to rely solely on an automated music
generation system, even if it can be programmedwith specific
parameters, as he wants to retain control over his own artistic
decisions in each composition. Thus, Tom decides to use the
NeuralPMG, whose GUI is shown in Fig. 1.

As first step, Tom wears a Emotiv headset, i.e., the BCI,
and trains the system to recognize his mental state, so that
it can determine if he is focused or relaxed. To accomplish
this task, he selects the "Focused" and then the "Relaxed"

buttons in the "Mental states training" panel of the system
interface. Once the system has been trained on Tom’s men-
tal states, he can carry on using it. Tom activates the Leap
Motion device to produce a melodic pattern: he moves his
fingers on the device that detects the coordinates of Tom’s
fingers and translates them into musical notes that are dis-
played on the musical staff. The finger position and the
musical staff are both displayed in the "Melodic pattern
creation" panel, on the left and central sides, respectively.
The melodic pattern can be played and stopped. Once he
has found a satisfactory melodic pattern, he can change and
explore different versions of melodic patterns through the
box "selecting Interval Axes in Semitones."With this button,
he can transpose and refit the melodic pattern on differ-
ent interval axes. When Tom thinks he has found the right
melodic pattern, he saves it as a MIDI or XML file. Using
thismelodic pattern as a seed, the system exploits the Slonim-
sky’s grammar to generate all the melodic patterns related to
that seed. Tom then goes on with "Polyphony Generation."
The trained classifier identifies Tom’s mental state and gen-
erates a polyphonic composition. Tom knows that when he is
focused, the polyphony has rhythmic values of quarter note,
eighth note, and sixteenth note, while when he is relaxed,
the rhythmic values are whole note, half note, and quarter
note. Thus, depending on the polyphony he wants to gen-
erate, Tom tries to be focused or relaxed. Tom can modify
the generation intervals, the "performance tempo" expressed
in bits per minute (bpm) and the interval of each polyphonic
voice according to what he feels for each composition.When
he finds the generated polyphony useful, he saves and exports
it in a MIDI or XML file format.

Later, having an archive of polyphonic and melodic com-
positions at his disposal, he can edit, arrange, andmanipulate
them as desired using either a digital audio workstation
(DAW) or a music notation software.

RelatedWork

In the current literature, the use of BCI for music generation
is a relatively unexplored area. This section addresses the
related work that informed our research.

The first recording of the EEG signal was made by the
German psychiatrist Hans Berger in 1929 and was a histori-
cal breakthrough providing a new neurologic and psychiatric
diagnostic tool [20]. The EEG process involves measuring
the electrical activity of active neurons in the brain. This
data must be filtered to discern various frequencies that serve
distinct functions. Since the late 1960s, EEG signals have
found applications beyond the medical field. Notably, BCIs
have expanded their use to monitor brain activity (i.e., EEG)
and control computers across various sectors beyond neuro-
science and medicine. These include areas like video games,
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Fig. 1 GUI of the
NeuralPMG framework: three
panels outline the main steps in
the process of creating the final
polyphony, i.e.,Mental states
training, Melodic pattern
creation, Polyhony generation.
Instructions for using the system
can be found in the panel at the
top

media art, music, and several other fields [21]. In the prelimi-
nary stages of biofeedback research, musicians and scientists
have used EEG technology to make sound, but mostly “pas-
sively generated sound” based on brain activity. One of the
primary limitations was the believing that the conscious state
of relaxation was directly linked to the value of Alpha band
waves. Consequently, to induce enhancement of the Alpha
band, a certain level of mastery over one’s consciousness was
necessary to attain and sustain the Alpha state. Regrettably,
early on, it was discovered that theAlpha state could be easily
disrupted by even minor motor, visual, or mental exertions.
As a result,music created using biofeedback techniques often
turned out to be passive, drone-like, and repetitive. This led to
the short-lived popularity of biofeedback music [22]. Exper-
iments such as Cage’s ones, where an EEG electrode was
directly connected to an audio amplifier, did not yield appre-
ciable results from a compositional standpoint, despite their
inherent interest [23].

David Rosenboom in his book Biofeedback and the Arts,
Results of Early Experiments describes several attempts of
usingEEG in artistic performances [24]. LloydGilden’s 1968
article, titled “Instrumental Control of EEG Alpha Activ-
ity with Sensory Feedback,” provides descriptions of the
experience of participants involved in various alpha-wave
experiments [25]. Formany individuals, achieving relaxation
state required dedicated practice and self-discipline, much
like the mental state one enters during Zen meditation (as
exemplified by Pauline Oliveros’ “Sonic Meditations" [26]).

Sanyal et al. [27] shows an effective way to correlate
users’ emotional states with auditory stimulation related to a
specific type of Indian music. The authors highlight that by
exploiting Multifractal Detrend Cross-Correlation Analysis
(MFDXA), it is possible to enhance the electrical activity’s
sound more explicitly in response to a specific external audi-
tory stimulus, resulting in an aroused brain state.

Quite notable are the many pieces that Teitelbaum real-
ized between 1966 and 1974 using psychophysical feedback
mixed with a variety of East spiritual disciplines and rituals.
Most pieces described by Teitelbaum required the performer
to strap on various EEG/ECG sensors and contact micro-
phones,whichwere used to amplify the performer’s heartbeat
andbreathing.Manyof the participants in these pieces trained
in consciousness and physical awareness disciplines such as
yoga and Zen meditation as a means of honing their perfor-
mance skills (see [28]).

Alvin Lucier was a pioneer in using EEG as a source
for music generation [29]. As described in [30], in Lucier’s
“Music for Solo Performer” seminal work the composer
employed the amplitude modulation of Alpha waves, pre-
cisely captured using two electrodes positioned frontal, to
interact with percussion instruments. This approach involved
harnessing the amplitude variations of Alpha waves to facil-
itate the manipulation of the percussion instrument’s surface
through the utilization of loudspeaker energy. Direct cogni-
tive control over the amplitude of these waves looks to be
exercised by the composer, thereby assuming an active role
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in steering the real-time generative course of the compo-
sitional process. In the analysis of Lucier’s performances,
as evidenced in available videos1 a notable behavior is
observed: Lucier frequently closes his eyes. This action is
relevant because closing one’s eyes is known to physiolog-
ically increase Alpha band power, a process independent of
cognitive intention. Additionally, Lucier’s habit of touch-
ing his eyes introduces artifacts into the EEG signal, further
influencing the output. Moreover, he actively modulates the
dynamics of the performance by adjusting the signal gain
via a hand-operated control on the EEG amplifier, which is
in turn connected to the speaker amplifier. This observation
leads to the conclusion that Lucier’s system represents an
early example of the sonification of natural alphawave trains,
which naturally occur in the human brain upon eye closure.

In 1990, Knapp et al. developed a system called BioMuse,
a musical instrument based on physiological biosensing
technology [31]. A series of electrodes detect cerebral activ-
ity (EEG), cardioid activity (ECG), and muscular activity
(EMG), which are sensed and digitized, and become human
interface data for commanding specific computer operations.

Only later it emerged that to control the state of relaxation
it is necessary to consider the ratio between Alpha and Delta
waves, and for concentration that between Beta and Theta:
“EEG-controlled musical instruments” have appeared.

Brouse and Miranda pioneered the field of algorithmic
musical composition by reprocessing EEG signals through
sophisticated programs. These programs are designed to
extract pertinent information from theEEGdata, such as fluc-
tuations and spikes, employing a range of mathematical and
algorithmic operations to interpret these signals musically.
A notable example of this innovative approach is Brouse’s
"InterHarmonium" introduced in 2001. This groundbreaking
system functioned as a "network of brains," where multi-
ple composers cooperatively engaged in the creation of a
polyphonic musical piece. In this setup, the BCI captures
EEG signals from each participant. These signals are then
transmitted over the Internet using the UDP protocol to a
central server. On this server, the incoming EEG data from
each interconnected composer is processed and integrated
to produce a cohesive polyphonic composition. This method
effectively combines the neural activities of various individ-
uals into a unified musical expression, showcasing a novel
intersection of neuroscience, technology, and art [32]. As
described in [33], the authors developed the BCMI-Piano,
i.e., Brain-Computer Music Interfaces Piano, a music gen-
eration system through an EEG signal processing chain. In
BCMI-Piano, some specific features are extracted from the
row signal and used to drive music generation algorithms.
The creation of Tempo andDynamics is related to the charac-
teristics of Hjorth Activity, Mobility, and Complexity. Pitch

1 see for example: https://www.youtube.com/watch?v=bIPU2ynqy2Y.

organization is related to the frequency band domain. The
Midi protocol enables communication between various elec-
tronic musical instruments based on these characteristics.

Hamadicharef et al. introduced I2R NeuroComm, a BCI
system for music composition [34]. This system allows users
to compose short and simplemelodies by inserting or deleting
notes in a musical partition, and playing them, all controlled
through brain waves based on the P300 paradigm [35]. The
focus, and primary contribution of theirwork,was on theGUI
and its components, which enables users to create musical
compositions by displaying the melody as text and as a real
musical partition and includes some functions for modifying
it on the fly.

Folgieri and Zichella proposed a low-cost BCI approach
that enables users to consciously produce specific musical
notes using their brainwaves [36]. This method integrates
audio, gesture, and visual stimuli. Specifically, the applica-
tion collects information with the following characteristics:
(i) users listen to each note only once; (ii) before repro-
ducing a note, the program instructs the user to associate
a simple gesture with it, suggesting different gestures for
different notes; (iii) while listening to each note, the soft-
ware displays an associated image—the name of the note on
a unique, note-specific colored background—aiding users in
playing the note using EEG signals.

Pinegger et al. proposed Brain Composing, a BCI-
controlled music composing software [37]. They evaluated
this system with five volunteers, noting enhanced usabil-
ity due to a tap water–based electrode bio-signal amplifier.
Remarkably, three of the five subjects achieved accura-
cies above 77% and successfully copied and composed a
givenmelody. The positive questionnaire results indicate that
the Brain Composing system offers an attractive and user-
friendly approach tomusic composition viaBCI. This system
employs a P300-based approach with a shrinkage linear dis-
criminant analysis (sLDA) classifier.

Deuel et al. in 2017 presented the Encephalophone, a BCI
with the double-edged purpose of exploring new frontiers in
music technology and as a possible therapeutic tool for peo-
ple who had suffered from strokes or neurological problems
like ALS [38].

Ehrlich et al. [39] presented a functional prototype algo-
rithm integrated into a BCI architecture, and able to generate
real-time continuous and controllable patterns of affective
music synthesis. The evaluation comprised two distinct stud-
ies: the first addressed the affective quality of synthesized
musical patterns produced by the automated music genera-
tion system. The second one explored affective closed-loop
interactions across multiple participants. Results highlighted
that participants demonstrated the ability to deliberately
modulate musical feedback by self-inducing emotions.

The Leap Motion (LM) controller plays a crucial role
in the NeuralPMG architecture. This device has gained
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recognition in various studies for its utility in managing
sound parameters through hand movements. One of its
notable applications is in controlling virtual instrument play-
ers, such as Native Instrument’s Kontakt Player4, where
it has yielded satisfactory results. The LM, in conjunction
with Kontakt Player, enables users to manipulate aspects
like velocity (dynamics) and key switches (changing artic-
ulation for virtual instruments). For pitch control, more
standard input methods like keyboards or Midi guitars are
typically employed.

In the context of commercial music production or per-
formance, the LM controller is instrumental in adjusting
elements such as filters, equalizers, instrumental loops, and
performance pitch. These functionalities are often executed
through the Gecko Midi application,2 which facilitates the
mapping of various hand gestures toMidi parameters, allow-
ing for a high degree of customization. A notable application
of the LM controller is found in the work of Croassacipto
et al. [40], who developed a height recognition system using
the LM and the K-nearest neighbor classifier. This system is
designed to classify handgestures basedon theZoltánKodály
method, which is instrumental in teaching interval intonation
and sung “solfeggio." Kodály’s approach creates a system of
signs that visually represent musical intervals, making them
easier to recognize and understand. The Leap Motion Con-
troller aids this process by capturing Pitch, Roll, and Yaw
values, drawing inspiration from basic aircraft principles.

LM is now widely used by musicians to control basic
sound parameters, emphasizing both advantageous and dis-
advantageous aspects. The advantages are related to the
simplicity and potential of using hand gestures to control
sound parameters. The key elements include the device’s low
frame rate, limitations of the distance between the hand and
controller, and occlusion issues between the user’s hands and
the device [41].

In addition, LM is used also for rehabilitation purposes
as a facilitated system for managing musical parameters for
people with disabilities [42].

These studies highlight the growing intersection of neu-
roscience, music, and technology, showcasing the innovative
potential of BCIs in musical applications. They explore the
potential of BCIs in enabling users to create or manipulate
music using brainwaves, each employing unique approaches
such as integrating audio, gesture, and visual stimuli, devel-
oping novel graphical user interfaces, and utilizing advanced
signal processing techniques. However, none of the exist-
ing works, to our knowledge, incorporates ML techniques
to develop systems that can compose music using BCIs, as
proposed in our research.

2 https://gallery.leapmotion.com/geco-midi/.

NeuralPMG Framework Architecture

In this section, we describe the NeuralPMG architecture.
According to Fig. 2, NeuralPMG consists of three macro-

components. The Data Acquisition module is in charge of
data acquisition from the two devices, i.e., the Leap Motion
and the Emotiv headset. The AI Engine module receives
the EEG power band values from the CortexV.2 REST API
and elaborates them with ML techniques to first create a
user’s mental state training dataset and later classify the cur-
rent mental state. The Music Generation Engine module is
responsible for (i) creating the melodic pattern based on the
data acquired by the Leap Motion; (ii) creating polyphony
based on the melodic pattern and the mental stated predic-
tion value provided by the AI Engine; and (iii) displaying a
GUI with the widgets for user interaction and system output.
The dashed lines between the architecture modules represent
control signal.

The processes of the modules are controlled using a
Python Flask library3 which allows us, through the API-Rest
technology, to manage a communication protocol based on
TCP-IP capable of handling server-client calls with related
data exchange on a specific IP address.

Two devices are used for acquiring user data:

• Brain-Computer Interface. The Emotive Insight de-
vice4 is a five-electrode passive headset capable of detect-
ing electrical voltages on the head surface (i.e., the EEG).
The electrodes are Semi-Dry Polymers, as they have a
conductive rubber coating. Generally, they can be used
without gels or conductive solutions. The EEG signal
quality is verified by the proprietary Emotive PRO5 soft-
ware interface, which provides a signal quality check
by means of colored indicators, from "Green = excel-
lent quality" to "Black = very poor quality." As shown in
Fig. 2, the EEG headset interface communicates, with the
Engine module by an API Gateway, using the native Cor-
texV.2 REST API. Once the signal calibration phase has
passed, data is received by the Cortex API SDK. Elec-
trodes are placed according to the official 10-20 system in
positions AF3, AF4, T7, T8, and Pz [43]. Figure3 shows
a schematic representation of the electrodes with their
positioning on the user’s head.
The Cortex V.2 API by Emotive enables interfacing the
device with various development environments. For each
electrode, the API provides a series of numerical val-
ues corresponding to the power spectrum in the different
bands of interest: Delta (0–4 Hz), Theta (4–8 Hz), Alpha
(8–12 Hz), Beta (12–35 Hz), and Gamma (35–43 Hz).

3 Python Flask library: https://flask.palletsprojects.com/en/2.0.x/.
4 https://www.emotiv.com/insight/.
5 https://www.emotiv.com/emotivpro/.
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Fig. 2 Overview of the
NeuralPMG framework
architecture main components

• Leap Motion. LM6 is a powerful tool for recognizing
the movement of different hand parts. Palm and fingers’
data of one or both hands in the spatial coordinates on
the x , y, and z axes are detected by an infrared camera.
The coordinates data streaming is received directly by
aka.leapmotion object7 in Max/Msp that visualizes
them in a widget of the user interface.

Polyphony Generation Process

The polyphony generation process is divided into two main
parts, namely:

• Generation of the basic melodic pattern: It is gener-
ated by selecting a reference interval axis as proposed
in Slonimsky’s theory. The infra-inter-extrapolation pro-
cess along with related permutations is determined by
the movement of one hand’s fingers (refer to “Melodic
Pattern Generation” section for details).

• Generation of polyphonic structure: The system emp-
loys the previously generated melodic pattern to cre-
ate a four-part polyphony. This involves overlaying four
rhythmic profiles, derived frompermutations of rhythmic
figures found in two distinct reference sets, onto the four
voices. The first set comprises rhythmic values of quar-
ter notes, eighth notes, and sixteenth notes, along with
their corresponding rest values. The second set includes
rhythmic values equivalent to whole notes, half notes,
and quarter notes, also accompanied by their respective
rest values. These divided sets are then utilized to form

6 https://www.ultraleap.com/product/leap-motion-controller/.
7 https://github.com/akamatsu/aka.leapmotion.

sequences of rhythmic figures. Concerning dynamic pro-
gression in each polyphonic voice, amplitude variations
corresponding to Alpha, Beta, Theta, Gamma, and Delta
brainwaves are scaled within the 0–127 range, in accor-
dance with MIDI protocol standards. The selection of
rhythmic value sets and dynamic progression is subject
to the user’s discretion, controlled through mental states
assumed during system usage.

Fig. 3 Electrode placement according to the 10-20 system
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Fig. 4 Visualization of the user’s left hand five fingers’ position in the
NeuralPMG GUI

Mental State Generation

The system records power data from Alpha, Beta, Theta,
Gamma, and Delta brainwave bands. This data is essential
for defining mental states. As per literature [44], the Focused
mental state correlates with increased power in Beta and
Gamma bands, whereas the Relaxed state is associated with
heightened Alpha band amplitudes. Initially, users must train
the system to distinguish between these two mental states.

To elicit a Focused mental state, users engage in men-
tal exercises that simulate an elevation in Beta and Gamma
brainwave activities. The system sequentially displays nume-
rical strings (e.g., [41-21-92-10-8-37-45-75-61-29-61-95-
79-…]) for the user to observe and read. Conversely, to
induce a Relaxed state, the system plays natural sounds such
as flowing water and bird chirps. The data collected during
the focused and relaxed mental state form a training dataset
for various ML algorithms and simple feedforward neural
networks with up to three hidden layers.

Melodic Pattern Generation

Melodic pattern generation relies on the positioning of select
fingers of one hand approximately 30cm from aLeapMotion
device. The Y-axis coordinates of the five fingers (left or
right hand) are recognized. Figure4 shows the position of the
fingers at 45°angle relative to a horizontal reference plane.
Three fingers are considered in building the melodic pattern:
the first note is the reference tone; the second, third, and
fourth notes are defined by the thumb, middle, and little fin-
gers respectively. Figure5 shows the same fingers translated
onto the musical staff.

The melodic pattern generated through LM is scaled
across two octaves using the bach.mod8 library. This scal-
ing process involves specific handling of input values relative
to a defined threshold:

1. Threshold processing: The system employs a thresh-
old of 2400 cents. For input values falling below this

8 https://www.bachproject.net/.

threshold, the output value directly corresponds to the
input value. Conversely, if the input value surpasses
2400 cents, the output is recalculated as input value-
2400 cents.

2. Constant addition for note display: To accurately rep-
resent the notes in both violin and bass clefs, a constant of
+6000 cents is added to the output value. This adjustment
ensures proper display and interpretation of the notes
within the respective clef notations.

3. Formation of the base melodic cell: The base four-
note melodic cell is derived initially. Subsequent notes
are generated by adding constants that correspond to the
selected interval axis. This process is pivotal in deter-
mining the melodic structure and is dependent on the
axis choice:

• Unison interval axis: If a unison interval axis is cho-
sen, a value of 0 cents is added to the four base notes.

• Augmented fourth interval axis: For an augmented
fourth interval axis, each note of the base cell is incre-
mented by +6000 cents.

4. Display and notation: The resulting pattern is then visu-
alized in a software object that provides a transcription
in mensural notation (as referenced in [45]). This display
includes a consistent rhythmic profile, standardizing all
notes to quarter notes.

Figure 6 illustrates the generated melodic pattern follow-
ing these procedures.

Polyphony Generation

The polyphony generation process starts with the analysis
of the user’s mental state, utilizing the Emotiv headset to
capture EEG signals. These signals are transformed from
the time domain to the frequency domain in the range 0.5–
43 Hz. The system samples 50 time series at approximately
1-s intervals, each consisting of 25 features. This data, per-
taining to Alpha, Beta, Theta, Gamma, and Delta bandwidth
values, is then fed into a classification algorithm. The algo-
rithm outputs a prediction value corresponding to a mental
state class, which informs the rhythmic value selection in
the Max/MSP software for generating the rhythmic profiles
of the four voices. The rhythmic values are divided into the
following two categories:

1. Focused state: consists of rhythmic figures 1/4, 1/8,
1/16 and their corresponding rest values;

2. Relaxed state: consists of rhythmic values of 4/4, 2/4,
1/4 and their corresponding rest values.

Random permutations of these rhythmic values generate
strings of 49 rhythmic figures, assigning one rhythmic value
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Fig. 5 Finger transposition on
the musical staff

Fig. 6 Melodic pattern of
infra-inter-ultrapolation on
augmented fourth C-F# interval
axis

to each note. These strings are then overlaid on the pitches
of the basic patterns distributed across the four voices in the
score, visualized in the bach.score object. This visualization
facilitates observing the complete polyphonic score as shown
in Fig. 6.

Subsequently, the score undergoes further refinement by
transposing each voice along a selected interval axis, as per
Slonimsky’s theory. This involves adding a numerical con-
stant to each note and voice, corresponding to the chosen
interval axis. Figure7 elucidates this transposition operation,
showcasing the initial set of pitches in the top box and the
altered set in the bottom box after adding a numerical con-
stant of 300.

The rectangle labeled “I°voice transposition" in Fig. 1
performs the summation operation between the top height
list plus the numeric constant. The input height list in the
bach.exprmethod is represented by the variable x1, while
the constant is represented by the variable x2. In the lower
panel of Fig. 7, the output list on which the summing opera-
tion was performed can be observed.

Additionally, the amplitude values from the relevant EEG
bands are utilized to set dynamic values for each note. These
dynamics are translated into MIDI velocity values, ranging
from 0 to 127. The Max/MSP’s native scales object is cali-
brated to scale these values appropriately, with input ranges
from 0 to 100 (reflecting the maximum bandwidths provided
by the Emotiv Insight) and output ranges from 10 to 127.
This ensures that notes are never assigned a velocity of 0,
which would equate to silence.

Upon completion of polyphony generation, the piece can
be audibly rendered. The tempo is adjustable via beats per
minute (BPM), allowing for the input of the desired metro-
nomic speed. Additionally, input boxes are provided for
further modification of the score, enabling transposition of
each polyphonic voice to preferred intervals. The finalized
composition can be exported in MIDI or XML formats.

NeuralPMG Engine

This section outlines the functioning of the NeuralPMG En-
gine. Two mental states are recorded (Focused/Relaxed) and
a dataset is created. For each user, NeuralPMG identifies the
best ML algorithm able to recognize the mental state. Using
LM allows the user’s finger movement to be recognized and
generate the melodic pattern.

Different ML models are used and compared in the train-
ing phase. The best model is then used for predicting the
user’s mental state. The system then generates polyphony
from the melodic pattern according to the user’s detected
mental state.

Dataset Generation The acquisition of the mental state is
managed by specific routines. There is TCP-IP call to Flask9

enabling communication between the BCI device and the
Cortex API.10 Once the connection has been established,
the API starts streaming power band data for each band and
electrode. They are absolute values whose unit is expressed
in uV 2/Hz. Each user has a dataset consisting of 25 fea-
tures based on 5 power bands for 5 channels, with 100 total
acquisitions: the first 50 items collected while the user was
stimulated to the Focused state by reading sequences of
numbers, the next 50 while listening to natural environment
sounds to induce the Relaxed state. As an illustrative exam-
ple, the Supplementary Table 1 available in the Appendix to
this article presents the mental state dataset acquired for a
single user.

Classification Model Evaluation Determining the user’s
mental state is influenced by several factors, as it is well-
known in the EEG analysis domain. First, values for delta,

9 https://flask.palletsprojects.com/en/2.2.x/.
10 https://emotiv.gitbook.io/cortex-api/.
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Fig. 7 Transposition operation
of the pitch set

theta, alpha, beta, and gamma frequencies can vary among
different users. Furthermore, users have different reactions
on internal or external stimuli, thus having different abili-
ties in relaxing or concentrating without being influenced by
the surrounding environment. To mitigate these problems,
we selected six ML models and tested their performances in
classifying mental state by involving five users. The models
are trained in parallel for each user; this approach is possi-
ble because the training dataset is not large and therefore it
does require reasonable computational resources and time to
execute. The following models were considered:

• Linear Discriminant [46];
• Decision Tree [47];
• Naive Bayesian [48];
• Support Vector Machine [49];
• K-nearest neighbors [50];
• Feedforward Neural Network [51] (1 hidden layer with
10-neuron);

• Feedforward Neural Network [51] (1 hidden layer with
25-neuron);

• Feedforward Neural Network [51] (2 hidden layers with
respectively 10 neurons per layer);

To perform the training phases of the models, we used the
Matlab toolbox - Classification Learner.11 It performs the
following steps: (i) Z -score standardization and (ii) training
phase with k-fold = 5. The toolbox returns the model with
the best accuracy among all models considering also the best
performance of the model on the five folds obtained in the
training phase. For eachmodel, a random search is performed
to select the best hyperparameters. The accuracy is calculated
as in Eq. (1).

Accuracy = T P + T N

T P + T N + FP + FN
(1)

11 https://it.mathworks.com/help/stats/classificationlearner-app.html.

In Eq. (1), TP, TN, FP, and FN represent the number of
true positive, true negative, false positive, and false negative
predictions, respectively.

Table 1 shows test results. KNN showed extremely low
accuracy values; therefore, it was not considered in the
system implementation. The feedforward neural network 1
(FNN1), despite its weak performance, was implemented in
the system.

Evaluation Study

In this section, we describe the user study that aimed
at evaluating the interaction with the NeuralPMG from
various perspective.

Participants and Design

The study on NeuralPMG specifically involved participants
from the Electronic Music Laboratory of the E.R. Duni Con-
servatory of Matera. This targeted selection was based on
two key prerequisites: expertise in algorithmic composition
and proficiency in both algorithmic composition and sound
manipulation software. This focus on electronic music stu-
dentswas intentional. Traditionalmusic composers, typically
from classical backgrounds, were not considered suitable for

Table 1 Mental state classification performances of the considered
models: LD, linear discriminant;DT, decision tree;NB, naive Bayesian;
SVM, support vector machine; FNN, feedforward neural network

Accuracy performance
User LD DT NB SVM KNN FNN1 FNN2 FNN3

1 0.67 0.86 0.90 0.88 0.48 0.66 0.78 0.45

2 0.43 0.52 0.67 0.69 0.34 0.57 0.60 0.59

3 0.84 0.65 0.67 0.80 0.62 0.64 0.80 0.82

4 0.67 0.78 0.65 0.89 0.56 0.59 0.98 0.92

5 0.89 0.67 0.64 0.76 0.40 0.68 0.67 0.52
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Fig. 8 Emotive Insight headset positioning and calibration

this study. Their training often emphasizes manual composi-
tion methods, including hand-writing music, and frequently
avoids the use of digital tools like music notation software.
In contrast, our study required familiarity with computer sys-
tems integral to algorithmic composition.

All participants in the study possessed a moderate level
of experience in algorithmic and computer-aided music
composition. While some were professional instrumental-
ists, all participants were skilled in at least one musical
instrument, aligning with the Conservatory’s educational
standards. Notably, none of the participants was previously
acquainted with Slonimsky’s method.

The participant group was diverse in terms of age and
gender: age min = 19, age max = 61, age avg = 30, females
= 10, males = 9, 1st academic degree level = 11 and, 2nd

academic degree level = 8.

Procedure

Three human-computer interaction (HCI) experts partici-
pated in the study: two as observers recording task execution
times and problems, and one as a facilitator managing
participant-system interactions. The experimental procedure
had participants performing the study individually. The study
was conducted in the "Rota" hall of the Conservatory under
medium lighting conditions, optimal for task visibility with-
out being invasive. The room climate was at a comfortable
21 ◦C , aided by its thick stone and tuff walls.

The study comprised six distinct stages:

1. Initial Procedure: The participant was first required to
sign a consent form permitting photo documentation for
research analysis and authorizing continuation of the
study. Following consent, the participant was seated at
the station where the study equipment was setup.

2. Calibration Phase: Participants donned the Emotive
Insight headset, adjusted for electrode placement per
the 10-20 standard system. The device was activated,
and electrode impedance checked usingEmotivePro soft-
ware. Calibration duration varied due to individual hair
types and skull shapes. EEG signal quality was ensured
for subsequent tasks, maintaining device battery above
50% as recommended by the manufacturer.12 Conduc-
tive gel was applied as necessary, and participants were
advised against sudden head movements or expressive
facial gestures. Figure8 shows the facilitator committed
to positioning the device on a participant’s head and cal-
ibrating the device.

3. Training Mental States: The study utilized machine
learning and neural network algorithms to differentiate
between the participant’s “Focus" and “Relaxed" men-
tal states. For “Focus," participants read a sequence of
randomly generated numbers on-screen. For “Relaxed,"
participants were asked to breathe diaphragmatically
while listening to a nature soundscape. This phase’s accu-
racy is critical for the success of subsequent stages, which
rely heavily on the classifier predictions Fig. 9.
The training of mental states is a very important phase as
it could significantly influence the subsequent phases of
the study. The rhythmic generation of polyphony depends
on the prediction of the classifiers, which must therefore
be trained correctly with training data as consistent as
possible with the user’s mental states.

4. Generation of the Melodic Pattern: Post-calibration,
participants were instructed on software commands to
create a melodic pattern:

• Toggle the start/stop leap motion button.
• Move the hand and fingers above the leap motion
sensor (at 10 cm) to compose a melodic pattern.

• Save the melodic pattern by holding a hand still over
the sensor and pressing the start/stop button.

• Press “Play" to listen to the melody, modify the inter-
val axis if necessary, and repeat until satisfied.

This phase averaged 10 min for each participant.
5. Polyphony Generation: Following Melodic pattern

creation, participants generated polyphony through
these steps:

• Press Dial to generate polyphony.
• Press Play to hear the polyphony adjust speed
(BPM) or interval axes as needed, and repeat
until satisfied.

• Save the composition by pressing the export
midi button.

12 https://emotiv.gitbook.io/insight-manual/introduction/technical-
specifications.
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Fig. 9 Melodic pattern generation by moving the left (or right) hand
over the Leap Motion device

The overall average completion time was approximately
20 min, including headset calibration.

Data Collection

Both quantitative and qualitative data were collected through
the answers to the questionnaires the participants filled in
during the study and the notes taken by the observer on signif-
icant behaviors or externalized comments of the participants.
All the interactions were audio-video recorded.

Initially, the participants filled in a questionnaire for
collecting demographic data and their competences on IT,
electronicmusic composition, andSlonimsky’smethod.Data
about this have been already reported in “Participants and
Design” section.

A second questionnaire consisted of 8 sections and aimed
at evaluating the interaction with NeuralPMGfrom differ-
ent perspectives. Each of the first five sections included a
questionnaire proposed in the literature, as detailed in the fol-
lowing, while the questions in the remaining 3 sections were
defined by the authors for investigating specific aspects:

1. User eXperience by AttrakDiff questionnaire [52]: 28
seven-step items whose poles are opposite adjectives
(e.g., "confusing - clear," "unusual - ordinary," "good -
bad"). It is based on a theoretical work model illustrat-
ing how the pragmatic and hedonic qualities influence
the subjective perception of attractiveness giving rise to
consequent behavior and emotions. In particular, the fol-
lowing system dimensions are evaluated: (i) Pragmatic
Quality (PQ): describes the usability of a system and
indicates how successfully users are in achieving their
goals using the system; (ii)Hedonic Quality-Stimulation
(HQ-S): indicates towhat extent the system support those
needs in terms of novel, interesting, and stimulating func-
tions, contents, interaction, and presentation-styles; (iii)

Hedonic Quality - Identity (HQ-I): specifies to what
extent the system allows user to identify with it; (iv)
Attractiveness (ATT): describes a global value of the sys-
tem based on the quality perception.

2. Support to creative design by Creativity Support Index
questionnaire [53]: 12-item psychometric survey to eval-
uate the ability of a tool in supporting users engaged in
creative works and which aspects of creativity support
may need attention. The CSI measures six dimensions of
creativity support: Exploration, Expressiveness, Immer-
sion, Enjoyment, Effort, and Collaboration.

3. Workload by NASA-TLX questionnaire [54]: Six-item
survey that rates perceived workload in using a sys-
tem through six subjective dimensions, i.e., Mental
Demand, Physical Demand, Temporal Demand, Perfor-
mance, Effort and Frustration, which are rated within
a 100-points range with 5-point steps (lower is better).
These ratings were combined to calculate the overall
NASA-TLX workload index.

4. User Engagement by User Engagement Scale (UES)
short-form questionnaire [55]: 12-item survey, derived
from the UES long form, used to measure the user
engagement, a quality characterized by the depth of a
user’s investment when interacting with a digital sys-
tem, which typically results in positive outcomes [56].
This tool measures user engagement by summarizing an
index that ranges from 0 to 5. It also provides detailed
information about four dimensions of user engagement,
i.e., Focused Attention (FA), Perceived Usability (PU),
Aesthetic Appeal (AE), and Reward (RW).

5. EmotionalResponse bySelf-AssessmentManikin (SAM)
questionnaire [57]: Two picture-oriented questions to
measure an emotional response in relation to pleasure,
arousal and dominance. In particular, the two questions
asked participants to indicate, in relation to the polyphony
generated, respectively: (1) the positive/negative liking;
(2) the excitement felt in relation to the emotion. The
score could be expressed through a Likert scale with
scores from 1 to 9 representing the degree of agreement
ranging from “negative" to “positive" for the first ques-
tion, and “low exciting" to “high exciting" for the second.

6. Self-assessment of the Generated Polyphony: Eight
questions specifically designed by the authors of this arti-
cle (scale 1–7), organized in three sections to investigate:

(a) Need for further modifications of the generated
polyphony with respect to pitches and dynamics (two
questions);

(b) Which compositional techniques are consideredmost
suitable for further processing (three questions);

(c) Which application domains are considered most
suitable given the harmonic/melodic context of the
generated polyphony (three questions).
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7. NeuralPMG appreciation: Two open questions ask-
ing the most and the least aspects that the participant
appreciated.

8. Comments and suggestions: One open question allow-
ing participants to provide comments and suggestions.

The average time taken by participants to complete the
questionnaire was 12 min.

Results

In the following subsections, data collected during the exper-
imental study are analyzed and results are provided.

Classification Performances of NeuralPMG Models

Table 2 shows the accuracy obtained during the experiment
by each model for each of the 19 participants. It emerges that
the different models for classifying the participants’ mental
state were selected homogeneously by the engine (LD, DT,
FNN2 = 4; SVM = 5), except for NB which was used for
only two participants. FNN1, which in the pilot test hadweak
performance, has never been the best classificationmodel and
was used for no participants.

Table 2 Model accuracy for each of the 19 participants. LD, linear dis-
criminant;DT, decision tree; NB, Naive Bayesian; SVM, support vector
machine;FNN, feedforward neural network. The gray background indi-
cates that model has been selected for that participant

Accuracy performance
Participant LD DT NB SVM FNN1 FNN2

1 0.67 0.78 0.85 0.66 0.51 0.43

2 0.54 0.65 0.45 0.69 0.52 0.58

3 0.84 0.76 0.67 0.82 0.64 0.47

4 0.34 0.55 0.41 0.86 0.78 0.94

5 0.89 0.78 0.68 0.72 0.81 0.84

6 0.90 0.87 0.77 0.82 0.67 0.78

7 0.55 0.52 0.41 0.48 0.50 0.51

8 0.34 0.45 0.44 0.49 0.31 0.30

9 0.80 0.87 0.90 0.97 0.87 0.88

10 0.45 0.80 0.51 0.78 0.80 0.97

11 0.30 0.73 0.45 0.56 0.70 0.75

12 0.67 0.56 0.78 0.80 0.78 0.90

13 0.45 0.91 0.34 0.78 0.68 0.87

14 0.30 0.40 0.46 0.44 0.23 0

15 0.56 0.39 0.4 0.76 0.6 0.5

16 0.70 0.80 0.64 0.79 0.73 0.77

17 0.43 0.44 0.65 0.32 0.7 0.98

18 0.67 0.91 0.80 0.78 0.79 0.46

19 0.31 0.20 0.30 0.43 0.38 0.40

Table 3 Mean (AVG score) and standard deviation (SD score) for each
category of the AttrakDiff questionnaire

AVG Score SD score

PQ 5.83 0.81

HQ-I 6.48 0.60

HQ-S 7.25 0.73

ATT 7.50 0.63

User Experience (UX)

An overview of the AttrakDiff results is presented in Table 3
and in the diagram shown in Fig. 10, which summarize the
hedonic (HQ) and pragmatic (PQ) qualities of the system
according to their respective confidence rectangles. In gen-
eral, the larger the rectangle, the greater the uncertainty about
the region to which the system belongs. NeuralPMG, there-
fore, has high HQ and PQ values; thus, it can be classified
as a desiderable product with promising UX. Furthermore,
the value of HQ (1.55, 0.29) is higher than that of PQ (0.76,
0.35), with partial values of attractiveness (ATT) (7.50, 0.63),
hedonic quality-identity (HQ-I) (6.48, 0.60), hedonic quality-
stimulation (HQ-S) (7.24, 0.73), and pragmatic quality (PQ)
(5.82, 0.80) Fig. 11.

Support to Creative Design

Using the CSI questionnaire, the participants’ perceptions
of creativity support were measured. From Fig. 12, it can be
seen that the system achieved an averageCSI score of 70/100,
which means good support for creative design (CSI=70.00,
STD=14.86). The mean and standard deviation of the system
CSI dimensions were reported as 1.5.

Fig. 10 Graphical representation of the average results of theAttrakDiff
questionnaire
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Fig. 11 Graphical
representation of AttrakDiff
questionnaire word pairs

As can be seen from Table 4, the highest average result
is immersion (8.18), i.e., the degree of immersiveness in
the system, followed by expressiveness (73.2), exploration
(76.3), and effort/reward trade-off (RWE 74.5). As expected,
the lowest value was obtained for collaboration (50.3) since
there is no user collaboration in the system.

In Fig. 13, we observe the proportion of relevance to
the averages of the values for each field of the CSI. The
fields of interest in exploration, enjoyment, and collaboration
are evident.

Workload

The workload data collected through the NASA-TLX are
shown in Table 5, where the weighted average (AVG) and
its standard deviation (SD) are indicated for each dimension.
The Likert scale used in the questionnaire ranges (1–10).

The mental effort dimension presents a weighted mean
value of 7.42 with an SD value of 7.68. These values denote
a high mental workload. Physical effort was low with a
weighted mean value of 0.63 and SD of 2.75. This result
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Fig. 12 Box chart representation of the global support to creativity
perceived by participants, based on the CSI questionnaire

is consistent with expectations since no physical effort was
required to the users. The participants’ perception of the time
spent presents insignificant values as the mean value is 5.53
and the SD is 5.57. The best result is obtained with the Per-
formance category, which presents average values of 8.11
and SD of 3.02, indicating positive feedback from users on
the result. Like the perception of time, the Effort presents
insignificant values (AVG 4.95, SD 6.84) which cannot be
discussed as their SD is extremely high. Finally, excellent
values can be observed with regard to "Frustration," which
presents an average of 3.95 and an SD of 5.03. However, the
SD of the latter factor is not negligible and could be due to
someproblems in the headset calibration and training phase.0

User Engagement

The results of the UES short form provide a value between
1 ("I do not agree") and 5 ("I agree") and are based on par-
ticipants’ involvement data during the interaction with the
system. Figure14 shows that the overall user involvement
has an average of 4.13 and SD of 0.41.

Furthermore, Table 6 shows averages and standard devi-
ations for each dimension, i.e., focused attention (FA),

Fig. 13 Box plot representation of overall user involvement according
to the four dimensions of the CSI questionnaire

perceived usability (PU), aesthetic appeal (AE), and reward
for interaction with the system (RW). Satisfactory results
were obtained, as the average value of PU is 4.28 and the SD
is 0.64.

The last two parameters, expressing respectively the aes-
thetic appeal and the reward for interaction with the system,
turn out to be remarkably high. In addition to this table, it is
also possible to observe in Fig. 15 the box plot of the UeS
data is divided into categories.

In Table 6, we can see that the AE indicator presents a
mean value of 4.28 (with an SD of 0.71), which denotes a
high visual attractiveness on the part of students. Finally, the
RW category presents the highest mean value of 4.46 (with
an SD of 0.6). This value highlights how the participant, at
the end of his tasks, felt satisfied with what he had produced.

Emotional Response

Figure16 shows the heatmap, average value, and stan-
dard deviation for participants’ emotional response to the
polyphony they generated.

Table 7 shows that two participants (nn. 1 and 13) stated
that they are Sad, Depressed, and Bored. Twelve participants

Table 4 Mean (AVG score) and standard deviation (SD score) for CSI questionnaire dimensions

AVG count SD count AVG score SD score AVG weigh. score SD weigh. score

Exploration 4 1.08 7.63 1.67 30.12 1.80

Collaboration 3 1.18 5.03 2.83 16.14 3.35

Immersion 2 1.60 8.18 1.72 18.52 2.74

Expressiveness 1.42 1.07 7.32 1.93 10.40 2.07

Enjoyment 3 1.33 6.74 2.01 20.21 2.68

Effort/reward tradeoff 1 1.61 7.45 2.34 8.62 3.77
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Table 5 Mean (AVG) and standard deviation (SD) for NASA-TLX questionnaire dimensions

AVG count SD count AVG score SD score AVG weigh. score SD weigh. score

Mental demand 1.21 0.92 4.63 2.83 7.42 7.68

Physical demand 0.11 0.46 2.68 1.73 0.63 2.75

Temporal demand 1.37 1.16 3 1.83 5.53 5.57

Performance 0.89 0.32 8.68 1.57 8.11 3.02

Effort 1 2.47 1 2.47 4.95 6.84

Frustration 0.74 2.35 0.74 2.35 3.95 5.03

indicated that they are Excited, Delighted, and Happy, while
two felt Sleepy, Calm, and Content (nn. 16 and 19). Finally,
three participants (nn. 3, 7, and 12) were neutral regarding
the emotions they felt about the polyphony they created.

σ(�z)i = ezi
∑K

j=1 e
z j

(2)

Table 8 summarizes the results of the softmax activation
function used to calculate percentages using the Eq. (2),
where �z is the input vector to the softmax function made
up of (z0,... zK ), zi values are the elements of the input vec-
tor to the softmax function; ezi is the standard exponential
function applied to each element of the input vector,

K∑

j=1

ez j (3)

is the term on the bottom of the formula is the normaliza-
tion term. It ensures that all the output values of the function
will sum to 1 and each be in the range (0, 1), thus constitut-
ing a valid probability distribution, and K is the number of

Fig. 14 Box chart representation of the global participants’ involve-
ment score based on the UES questionnaire

classes in the multi-class classifier. We can observe an high
positive score.

Self-assessment of the Generated Polyphony

Considering the answers to the two questions in the first
section, i.e., need for further modifications of the gener-
ated polyphony with respect to pitches and dynamics that in
Fig. 17 we have labelled as Elaboration, the average value of
3.42 out of 7 suggests that the generated polyphonies require
substantial modifications when they are to be finalized for
end use. Considering the answers to the three questions in
the second section, i.e., whose compositional techniques are
most suitable for the further elaboration of the polyphonies
thatwehave labelled asCompositional Techniques, it appears
that the most suitable techniques are aleatory (AVG = 5.42)
and serial/atonal (AVG = 5.21), while aleatory techniques
(AVG=3.37) are not very suitable. Finally, the answers to the
three questions in the third section, i.e., whose domains are
considered most suitable for the application of polyphonies
generated through the system that we have labelled asUsage,
show the prevalence of the Multimedia (AVG = 5.84) and
Academic (AVG = 5.16) domains, while commercial music
for entertainment (AVG = 3.47) is less appropriate.

NeuralPMG Appreciation

The two open answers provided by the participants were
analyzed in a systematic qualitative interpretation using
an inductive thematic analysis [58]. Two HCI researchers
followed the six-step procedure proposed by Braun et al.

Table 6 Mean (AVG) and standard deviation (SD) for NASA-TLX
questionnaire dimensions for UES questionnaire dimensions

AVG score SD score

FA-S 3.51 0.56

PU-S 4.28 0.64

AE-S 4.28 0.71

RW-S 4.46 0.60
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Fig. 15 Box plot representation of overall participants’ involvement
score according to the four dimensions of the UES questionnaire

[58]: data familiarization, coding, themes generation, themes
review, themes naming, and theme description. In the end,
a set of themes representative of the most appreciated and
least appreciated aspects of the system were identified. For
the appreciated elements: "Production of unconventional
melodies," "Overall system novelty," "Power of genera-
tive grammar," "Production of unconventional polyphonies,"
"Use of BCI system," and "Use of Leap Motion device"; for

the critical elements: "Use of BCI system," "Use of Leap
Motion device," "System graphical user interface," "System
appreciation," and "System efficiency". The frequency of
each theme in participants’ responses was then calculated,
as reported in Tables 9 and 10.

Comments and Suggestions

Seven participants left an additional comment answering
the last open-ended question of the questionnaire. All com-
mentswere positive. The respondents expressed appreciation
towards the system (four comments), the wish to use the
system in their work (two comments). One participant also
suggested the possibility of using other biometrics, such
as heartbeat.

Polyphony Assessment byMusic Experts

Two professors of the E.R. Duni Conservatory of Matera,
both holding the title of Maestro, and with extensive experi-
ence in music composition were involved. They individually
listened to the 19 polyphonies generated by the 19 partic-
ipants in the previous study and, for each one, answered a
questionnaire structured in six sections:

Table 7 Participants’ emotions about the generated polyphony

Emotion
Participant Sad Depressed Bored Excited Delighted Happy Sleepy Calm Content Neutral

1 ✓ ✓ ✓ - - - - - - -

2 - - - ✓ ✓ ✓ - - - -

3 - - - - - - - - - ✓

4 - - - ✓ ✓ ✓ - - - -

5 - - - ✓ ✓ ✓ - - - -

6 - - - ✓ ✓ ✓ - - - -

7 - - - - - - - - - ✓

8 - - - ✓ ✓ ✓ - - - -

9 - - - ✓ ✓ ✓ - - - -

10 - - - ✓ ✓ ✓ - - - -

11 - - - ✓ ✓ ✓ - - - -

12 - - - - - - - - - ✓

13 ✓ ✓ ✓ - - - - - - -

14 - - - ✓ ✓ ✓ - - - -

15 - - - ✓ ✓ ✓ - - - -

16 - - - - - - ✓ ✓ ✓ -

17 - - - ✓ ✓ ✓ - - - -

18 - - - ✓ ✓ ✓ - - - -

19 - - - - - - ✓ ✓ ✓ -
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Fig. 16 Participants’ emotional
response to the generate
polyphony in terms of Valence
and Arousal

1. Three questions focusing on the evaluation of the aes-
thetic aspects of the polyphony;

2. Four questions addressing the technical evaluation of the
harmonic aspects;

3. Three questions analysing the polyphony level of
elaboration;

4. Three questions dealing with the evaluation of possible
usage scenarios of the polyphony;

5. Nine questions assessing each polyphony with respect to
its ability to arouse nine different emotions: happiness,
tenderness, happiness, anger, sadness, fear, negativity,
activity, positivity, tension.

6. One open question to provide further comments and
opinions.

The first five sections were based on a Likert scale with
values from 1 to 7, representing respectively the degree of
agreement ranging from "not at all" to "very much."

Results of the music experts’ assessment have been
summarized by heatmaps, complemented with average val-
ues and standard deviation for every question and section.
Figures18 and 19 refer to the polyphony evaluation provided
by Maestros 1 and 2, respectively.

Discussion

In this section, we delve into the implications of the results
from the NeuralPMGevaluation. We explore various dimen-
sions including user experience (UX), creativity, workload,
participants’ engagement, participants’ self-assessment of
the generated polyphony, application domains, and partic-
ipants’ feedback. This discussion, which also takes into
account the evaluation performed by the two Maestros, not
only addresses the system strengths and areas for improve-
ment but also reflects on its broader impact on musical
composition and user interaction.

Table 8 Emotional score softmax activation function

Excited, delighted, happy 0.99978

Sleepy, calm, content 0.00005

Neutral 0.00012

Sad, depressed, bored 0.00005

Regarding UX, the AttrakDiff questionnaire results indi-
cate that participants generally provided positive feedback
about NeuralPMG, highlighting its attractiveness. However,
it is clear that there is a need for enhancements in its prag-
matic quality.

In terms of creativity, as per the CSI results, the explora-
tory aspect scored the highest. This is in line with our
expectations, given the participants’ professional activity,
applications of this type are perceived with particular inter-
est. The coefficient of RWE (effort), despite achieving a
fairly high score, played a marginal role for participants.
Both immersiveness and enjoyment turn out to be particu-
larly weighty components. However, it is worth noting that
expressiveness did not emerge as a significant factor for
them. This result is consistent with the sample of partici-
pants, since generally every musician or composer does not
look for the expressive capacity in software ormusical instru-
ments but uses them to satisfy his own expressive need. We
can therefore assume that the system stimulates and supports
the creativity of the participants who, while using the system,
remained focused on the final task, isolating themselves from
their surroundings.

Regarding workload, physical effort was low, but some
participant’s frustration can come because of problems with
BCI headset calibration.

Participant engagement while interacting with Neu-
ralPMG was positively assessed by the UES questionnaire,
as also confirmed by the measured Emotional response.

In the self-assessment of the generated polyphony, par-
ticipants recognized system effectiveness in facilitating the
complex process of managing and calculating note organi-
zations within the tempered space. While the polyphonies
based on Slonimsky’s grammar require additional refinement
in pitch and dynamics, they serve well the composer’s ini-
tial creative needs, who wants to create rough polyphonies to
be later refined according to a specific application. Also, the
results align with the fundamental principles of serial and
atonal techniques, which focus on exploring diverse orga-
nizational approaches in musical composition. The entire
theoretical evolution of music focuses on one main question,
namely that of providing the composer with the possibil-
ity of being able to explore the possible musical space both
in the melodic/polyphonic direction and in the rhythmic
and timbral direction. Finally, about the possible applica-
tion domains, the participants found the polyphony generated
more suitable for academic or multimedia application, rather
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Fig. 17 Participants’ self
assessment of the generated
polyphony

than commercial, reflecting a tradition in “cultured" music
of rational experimentation and innovation. All composers
belonging to the sphere of cultured music, throughout the
history ofmusic, have always experimentedwith newcompo-
sitional solutions in order to search for useful compositional
models to generate never-before-heard and innovativemusic.
In multimedia contexts, particularly in movie soundtracks,
these compositions effectively convey dynamic emotions
and narratives, like portraying the passage of time or emo-
tional undertones in a scene, through sound textures and
harmonic layers.

Analysis of responses to open-ended answers of the ques-
tionnaire revealed insightful participants’ feedback regard-
ing the NeuralPMG system. Seven participants praised its
effectiveness in decoding mental states for polyphony gener-
ation.However, concerns about the comfort of theBCI device
were noted by five participants, underscoring the need for
improved wearability. It suggests that while the introduction
of BCIs in this domain is convenient and useful, the aspects
concerning thewearability of the device itself need to be eval-
uated very carefully. In recent years, manufacturers of com-
mercial BCI devices have been heavily investing in attractive
and comfortable devices, making great strides in research.

Additionally, the system’s innovativeness was recognized
by seven participants. Feedback from two participants also
pointed to the necessity of enhancing the Graphical User
Interface in terms of colors and graphics in general. We
welcome this observation, noting that in a future software
upgrade, we plan to improve the interface, by implementing
widgets specific to the music domain.

Regarding the assessment of Slonimsky’s grammar effi-
cacy in facilitating more accessible exploration of harmonic

Table 9 NeuralPMG aspects appreciated by participants

Theme Frequency

Production of unconventional melodies 3

Overall system novelty 7

Power of generative grammar 2

Production of unconventional polyphonies 3

Use of BCI system 7

Use of Leap Motion device 3

and melodic domains, two participants observed that the sys-
tem engendered unconventional melodies, while three noted
its capacity to produce atypical polyphonies. These observa-
tions reinforce our hypothesis: the system acts as a catalyst
in the discovery and analysis of novel compositional mate-
rial, thereby aiding in the evolution of a more intricate and
innovative compositional process.

The study reveals a noteworthy facet concerning the uti-
lization of the Leap Motion device. Among the participants,
four found it challenging to employ this device for craft-
ing melodic patterns. Enhancements could be realized by
moderating the tracking sensitivity to finger movements.
Such adjustments would ensure a more stable generation of
melodic patterns, effectively preventing minor finger move-
ments from resulting in significant pitch alterations. This
refinement would endow users with enhanced stability and
control over their feedback.

The study elicited two critical responses concerning key
aspects of the system. The first pertained to an inability for
the user to “observe" the interplay between BCI technology
and the generation of polyphony, specifically, understanding
how various detected EEG signals are processed by AI algo-
rithms to yield results. This challenge is acknowledged in
the human-computer artificial intelligence (HCAI) field [59,
60], and underscores the broader issue of AI lack of explain-
ability [61], which hinders user comprehension of AI-driven
decisions. The second negative feedback concerned one
participant’s objection to the use of advanced computer sys-
tems in musical composition, perceived as overly alienating.
This viewpoint highlights the intricate and sometimes con-
tentious relationship between humans and technology, with
some individuals viewing technology as a potential threat to

Table 10 NeuralPMG aspects criticized by participants

Theme Frequency

Use of BCI system 5

Use of Leap Motion device 4

System graphical user interface 2

System appreciation 2

System efficiency 3
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Fig. 18 Maestro 1’s evaluation
of the polyphonies produced by
the 19 participants

human-centric activities. From our point of view, the prob-
lem can be related to the previous observation, i.e., the lack
of awareness of computer processes, perceived as cryptic.

In response to these insights, we propose designing solu-
tions that clarify the data flow management processes to the
user, balancing transparency with the avoidance of infor-
mation overload. Enhancements could include additional
interfaces that explicitly outline the classification of men-
tal states and the corresponding steps in generating rhythmic
textures for each polyphonic voice. Such an approach aligns
with HCAI principles advocating for AI systems to be reli-
able, safe, and trustworthy [62]. By making the back-end
processes transparent, users gain both awareness and control
over the system operations. Since this work is contextualized
in themusical domain, it seems appropriate to place the sense
of control alongside the Leitmotiv, a familiar tool in music
and cinematography. The Leitmotiv, typically a melody rep-
resenting a physical entity or character, serves as a perceptual
cue, signalling a character’s presence or actions, without the
character being in the spectator’s visual field. Leveraging the
Leitmotiv concept, backend processes of the system could be

represented through distinct acoustic or visual signals, mak-
ing the decision-making processes of the systemperceptually
evident to the user. This recognitionwould reduceuncertainty
and stress associated with unseen backend activities.

The evaluation by the two Maestros provided valuable
insights into the study. Regarding the aesthetic quality of the
polyphonies, parameters like pleasantness and elegance are
inherently personal assessments, rooted in each individual’s
interpretation of these terms. However, the Maestros con-
curred in their appreciation of the aesthetic aspects of the
polyphonies created by the 19 participants, and they agreed
on the consonance/dissonance of each piece, which is a more
objective criterion.

In terms of innovativeness, however, the Maestros’ opin-
ions diverged, reflecting their distinct perspectives on what
constitutes innovation and harmonic interest in polyphonies.
Drawing from Vincent Persichetti’s principles in "20th Cen-
tury Harmony" treatise, the perception of musical intervals
is influenced by their distribution within the composition. A
dissonant interval can be defined as such if it is immersed in
a context of consonant intervals. Conversely, if the entire

Fig. 19 Maestro 2’s evaluation
of the polyphonies produced by
the 19 participants
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piece is based on dissonant intervals, consonant intervals
are considered as dissonant. Given that both Maestros rated
the polyphonies highly in terms of consonance/dissonance
(averages of 6.42 and 6.21), this suggests a coherent har-
monic structure. Maestro 1 viewed the polyphonies as not
particularly innovative due to their harmonic alignment
with traditional polyphonic styles. In other words, Mae-
stro 1 did not consider disruptive the produced polyphonies.
Conversely, Maestro 2 assessed innovativeness in light of
Slonimsky’s theory, focusing on the system ability to gen-
erate novel, interval, non-tonal structures. Their evaluations
also differed in the Elaboration questionnaire section on the
stimulation of composition and improvisation. Maestro 1’s
approach was xmore “vertical," considering the harmonic
integration of melodic/polyphonic textures, while Maestro
2 adopted a more “contrapuntal" perspective, viewing each
polyphony as an innovative overlap of independentmelodies.

Regarding the need for further modification of the poly-
phonies, Maestro 1 felt minimal changes were neces-
sary, consistent with his view of the coherence among
the polyphonies. Maestro 2 believed many polyphonies
required refinement, considering them as contrapuntal start-
ing points for potential interval permutations aligned with
Slonimsky’s grammar.

The analysis of Emotional perceptions in the fourth sec-
tion revealed diverse reactions, underscoring the subjective
nature of musical interpretation. If one piece evokes tension
for one musician and sadness for another, it will be utilized
differently across various applications, such as in scoring a
visual sequence or in pure composition. The differing emo-
tional responses from the two domain experts affirm that the
student-generated material indeed provokes a range of emo-
tional reactions, highlighting its versatility and depth.

Conclusions and FutureWork

In this researchworkNeuralPMG, a framework to support the
work of professional composers during the “compositional
phase of music,” has been presented. NeuralPMG is capable
of calculating all possible interval permutations according to
Slonimsky’s grammar, as outlined in his treatise “Thesaurus
of Scales and Melodic Patterns.”

The evaluation study demonstrated that the framework
can be an effective and useful tool for music composition.
However, a limitation to the validity of the work is that the
framework was only tested in a laboratory setting. Therefore,
a longitudinal studywith field experiments involving domain
experts during the production phase of musical compositions
in a real-world context would be desirable. This would also
assess the timing of music production and the diversity of
materials produced.

NeuralPMG shows potential for a numerous futureworks.
From a hardware perspective, the type of BCI used is a major
concern, as it is crucial in determining whether a musician
would choose to purchase and use such a device. Currently,
there are various off-the-shelf BCIs available, some of which
are unobtrusive, comfortable, and still effective. In the study,
a five-electrode device was used, as it was the one available
in our laboratory. However, since the system only needs to
classify between two states, namely Focused and Relaxed, a
lightweight single-electrode headset, like the one offered by
the Neurosky with a single frontal electrode, would suffice.

An interesting area for future investigation is expand-
ing the current set of metrics. Interest could control an
additional parameter of the music generative process, mean-
while monitoring user’s stress. The detection and process-
ing of emotions by ML algorithms can be considered in
polyphony generation.

The overarching goal is to integrate NeuralPMG into an
ecosystem of products useful to musicians/composers who
utilize computer tools to enhance their work and connect
with other art forms. In this direction, NeuralPMG could
be integrated with other systems that consider mental states,
interest, emotions, stress, and body movements detected by
sensing systems like OpenCV or Kinect.

Glossary

• Augmented fourth interval: Distance between two
three-tone sounds.

• Cents: Cent is a logarithmic unit of measure used for
musical intervals.

• Chromatic variation: Ability that a sequence of notes
has to change its interval structure by altering the notes
by a semitone or tone.

• Heptatonic scales: Scales having seven notes per inter-
val of symmetrical repetition. In the case of scales made
within the octave interval it is a scale for seven notes in
an octave.

• Infrapolation: Termcoined bySlonimsky to describe the
insertion of a note below a reference interval progression.

• Interpolation: Term used by Slonimsky to describe
the insertion of a note within a reference interval
progression.

• Interval axis: Term that describes the imaginary line
joining the notes of an interval progression theorized
by Slonimsky.

• Melody: Succession of musical notes with complete
meaning, with their own pitch and rhythm.

• Octave: Interval between two sounds, such that the
higher (high) one has twice the frequency of the lower
(low) one.
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• Pentatonic scales: Scales havingfivenotes per interval of
symmetrical repetition. In the case of scales made within
the octave interval, it is a scale for five notes in an octave.

• Polymodality: Term used in functional harmony to
describe the superposition of multiple modes in differ-
ent octaves in succession.

• Polyphony: In music, the union of several voices each
performing its own melodic pattern.

• Retrograde: Procedure derived from contrapuntal tech-
nique to describe the reading of a series from the last note
to the first.

• Seriality: Term coined by Schöenberg to describe his
compositional system based on the concept of seriality,
that is, the arrangement of the chromatic scale in the dif-
ferent octaves and all the compositional rules about it.

• Symmetrical repetition of interval scale structures:
This term refers to the point at which a scalar or interpola-
tion pattern repeats symmetrically from that point-note to
the next. In scales built on the “octave interval," the octave
interval represents the point of symmetrical repetition of
the scale itself. In a scalar model based on an augmented
fourth interval axis, the augmented fourth interval rep-
resents the point of symmetrical re-proposition of the
scalar model.

• Ultrapolation: Term coined by Slonimsky to describe
the insertion of a note above a reference interval progres-
sion.

• Unison: Simultaneous sounds with equal pitch.
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