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A B S T R A C T

Serverless computing enables greater flexibility and efficiency in the cloud-to-edge continuum. Artificial Intel-
ligence and Machine Learning (AI/ML) applications benefit greatly from this paradigm, as they need to gather,
preprocess, aggregate and analyze data at various scales. In such contexts, the increasing hardware/software
resource availability of Internet of Things (IoT) devices provides the opportunity to exploit them not only
as data sources in AI/ML infrastructures, but also as computational nodes for model training and inference;
nevertheless, comprehensive frameworks are still mostly missing. This work introduces an innovative serverless
computing architecture which expands the cloud-to-edge continuum toward IoT devices. The same functions
can run on IoT, edge and cloud nodes with minimal to no code modification and they can be invoked through
a uniform interface. A federated learning framework is defined based on the proposed architecture, exploiting
an existing IoT-oriented ML algorithm in a novel way. Notably, IoT nodes are used for both federated training
and local inference tasks. A full prototype implementation has been built with off-the-shelf technologies and
devices. A case study on federated machine learning for activity recognition and experiments have been
conducted to validate key elements of the proposal.
1. Introduction

The growth of real-time data streams generated by Internet of
Things (IoT) devices poses availability, scalability and performance
issues to cloud-based large-scale centralized collection and processing.
The edge computing paradigm enables intelligent analysis at a smaller
scale, in a more localized way, closer to data sources in the field,
thereby decreasing latency and bandwidth usage, improving privacy
and mitigating the effects of infrastructure failures and security vulner-
abilities. The impact of edge computing is revealed by several indicators
[1], including: (i) worldwide hardware market size, projected to grow
from 9 to 146 billion U.S. dollars in the 2019–2028 decade; (ii) orga-
nizations’ rising awareness of benefits and opportunities of improving
latency, bandwidth, security, and dependability issues through edge
computing; (iii) research interest, with a 35-fold increase in the number
of published papers in the last 7 years. The integration of edge and
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cloud computing can leverage the best of both models, by defining
a more flexible data gathering and management infrastructure based
on applications’ workloads, infrastructure status and devices’ resource
availability. Market research shows the majority of businesses are
already implementing an integrated edge–cloud strategy [1]. In latest
years, more advanced paradigms like Osmotic Computing [2] can es-
tablish a cloud-to-edge continuum, [3] where application microservice
containers can be orchestrated and migrate dynamically across the two
tiers [4].

Machine Learning (ML) and Artificial Intelligence (AI) applications
are among the main use cases for cloud-to-edge architectures [5]. In
early approaches, the more computationally demanding task of model
training occurred in a centralized way in the cloud, while inference
could be performed at the edge. More recently, model training and
inference can be executed at both the cloud and edge layers – possibly
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with different trade-offs between latency, efficiency and accuracy – as
data can be partitioned and aggregated at various levels and edge nodes
are increasingly equipped with low-power specialized coprocessors for
machine learning [4,6]. This kind of processing infrastructures enables
Federated Learning (FL) [7] in the cloud-to-edge continuum, where
multiple edge nodes collaborate to solve machine learning problems on
different data subsets, under the coordination of a central cloud-based
aggregator.

As the next step of the evolution of cloud-based and cloud-to-
edge applications, in the serverless computing paradigm [8] application
microservices encapsulate and expose stateless functions (a.k.a. lambdas,
with a term borrowed from functional programming languages). Func-
tions can be invoked without explicitly dealing with server or container
provisioning, as it is managed by the infrastructure automatically.
Serverless computing requires decomposing applications into a set of
atomic stateless functions, but it pays off with increased availability,
scalability, fault tolerance and cost-effectiveness, as it enables a more
elastic adaptation to workload shifts while reducing risks of resource
over- or under-provisioning.

The ever-increasing computational resources of IoT devices, sup-
porting the availability of high-level programming language runtimes,
provides an opportunity to expand the cloud-to-edge continuum toward
the periphery of the network, right where new data are generated.
By distributing computation even more pervasively, further latency
and bandwidth savings can be achieved and overall scalability and
resilience can be improved. This model fits AI/ML applications par-
ticularly well, since they are based on data stream aggregation from
multiple sources, filtering, and analysis. If the same operations could
be run at the IoT, edge and cloud layers as serverless functions, appli-
cations would be able to distribute workloads across all three layers,
based on application- and context-specific availability, latency, data
privacy and security criteria. While topics such as TinyML [9] and
the Semantic Web of Everything [10] denote research results to bring
advanced ML and AI technologies on board IoT and embedded devices,
comprehensive frameworks for integrating them into a cloud-to-thing
continuum [11] are still in their infancy.

Striving to fill that gap, this work proposes a novel general-purpose
framework for expanding the cloud-to-edge continuum to IoT devices
through serverless computing. The main contributions of the work can
be summarized as follows:

• The infrastructure is transparent to the user and devices, that is,
a node can collect and send data or queries to a local edge device
or cloud endpoint and the response will be the same regardless
of the device which processed the message. This seamless cloud-
to-edge continuum is achieved by (i) ensuring that functions on
both edge and cloud are equivalent in terms of inputs, outputs,
topics, and messaging schema and (ii) enabling the full execution
of the FL workflow across both layers. Moreover, the continuum
expands to the IoT, as serverless functions for ML training and
inference can be executed in the cloud, in edge nodes and in IoT
field devices with minimal to no code difference.

• The framework is basically general-purpose, but a federated
learning scenario has been adopted as a significant motivation,
use case, and testbed for experiments. The federated learning
architecture is also new, extending a semantic-enhanced IoT-
oriented ML algorithm [12] by leveraging the amenability of
its data summarization structure to aggregation operations be-
fore model generation. Although other ML and Deep Learning
algorithms may exhibit higher accuracy than the adopted ML al-
gorithm, it allows models to be generated out of larger and larger
datasets from the IoT to edge to cloud nodes, by aggregating
intermediate summaries. Therefore IoT nodes execute federated
training tasks in addition to local inference (a.k.a. prediction)
ones.
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• The architectural design aims to be able to grant device and
application security as well as data privacy, which is crucial in
sensitive IoT contexts such as healthcare or vehicular networks.
Security is enforced by the IoT and edge device management
platform, by means of authentication mechanisms and encrypted
communications. Privacy is supported by the devised federated
learning architecture and protocol, which allow training ML mod-
els locally in IoT field devices or edge nodes, without sending
them across the Internet to the cloud infrastructure.

• A platform prototype has been implemented using Commercial
Of-The-Shelf (COTS) tools. The reference cloud provider is Ama-
zon Web Services (AWS) since it provides all the technological
building blocks required to implement components of the logical
architecture, with AWS Greengrass (https://aws.amazon.com/it/
greengrass/) that allows deploying serverless functions to the
edge. Edge and IoT nodes have been implemented with Raspberry
Pi single-board computers and STM-32 microcontrollers, respec-
tively. An analysis has been conducted about portability to other
providers and technologies.

n order to validate and clarify the proposed approach, a case study is
onducted on the well-known MotionSense large-scale dataset [13] for

activity recognition from data gathered in wearable devices. Illustrative
examples clarify the framework and experimental analysis validates the
core contributions of the research.

The proposed federated learning approach spanning cloud, edge and
IoT layers has a wide range of possible applications. In telemedicine
and active ageing scenarios, wearable devices can process data from
individual subjects locally, sharing only anonymized aggregates with
the edge and then the cloud; significant training can be performed
in place with minimal latency, while waiting for larger and more
accurate models from upper layers. In smart manufacturing scenarios,
the proposed framework can manage Industrial IoT deployments for
product quality control and equipment predictive maintenance across
different production lines, shopfloors and plants. In the Internet of
Drones [14], individual Unmanned Aerial Vehicles (UAVs) can perform
AI/ML data processing on board, and share only significant high-
level model information with peers and ground stations rather than
raw data streams, thus improving latency as well as bandwidth and
energy consumption in scenarios including search and rescue, [15]
environmental and urban monitoring, precision farming and logistics.

The remainder of the paper is as follows. Section 2 provides back-
ground information on the adopted ML algorithm and relevant re-
lated work. Section 3 describes the framework, outlining the logical
architecture, model training and inference tasks in federated learn-
ing. Portability considerations for integrating further cloud technology
providers and ML tools are in Section 4. The prototypical implemented
testbed is described in Section 5, including an illustrative example of
federated learning for activity recognition through wearable devices.
Early experiments are reported in Section 6, before conclusion.

2. Background

This section briefly recalls the reference ML algorithm which is ex-
ploited in a novel way to enable federated learning in the cloud-to-thing
continuum. Relevant related work is also discussed.

2.1. Matchmaking features for (federated) mAchine learning data analysis

This work leverages Mafalda (MAtchmaking Features for mAchine
Learning Data Analysis) [12], an IoT-oriented semantic-enhanced ML
algorithm. Mafalda supports the typical ML pipeline for classification
problems: data collection and preparation, feature extraction and selec-
tion, model training and refinement with hyperparameter optimization,
model evaluation and deployment to generate predictions. Neverthe-

less, the semantic-enhanced approach changes the way each step is

https://aws.amazon.com/it/greengrass/
https://aws.amazon.com/it/greengrass/
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Fig. 1. Mafalda workflow for federated learning.

performed w.r.t. purely stochastic methods. The proposed workflow of
Mafalda for FL is depicted in Fig. 1 and described in detail in what
follows.

Data collection (DC) and Data modeling (DM). After training set
gathering and cleaning, feature selection is supported by an ontology
which models the domain conceptualization along properly defined
patterns, in order to allow semantic-based data annotation and in-
terpretation. The ontology is expressed in a restriction of the Web
Ontology Language (OWL) version 2 [16], corresponding to the Attribu-
tive Language with unqualified Number restrictions ( ) Description
Logic. Specifically, for each feature 𝑓𝑞 the ontology must include a
corresponding class 𝐴𝑞 and a partonomy of it, i.e., a set of subclasses
𝐴𝑞,1, 𝐴𝑞,2,… , 𝐴𝑞,𝑝𝑞 with ∀𝑗 = 1,… , 𝑝𝑞 ∶ 𝐴𝑞,𝑗 ⊑ 𝐴𝑖, representing all

meaningful configurations or value ranges the feature can take; 𝑝𝑞
is different for each 𝑞 as partonomies for different features are not
constrained to have the same number of classes. As a minimal example,
consider the ontology in Fig. 2, which models room temperature and
humidity features.

Build Training Matrix (BTM). The subsequent training step builds
an intermediate aggregate data structure named Training Matrix (TM),
which is then used to generate the model as a set semantic annotations,
one denoting each possible output class in the training set. Training
is executed on a set 𝑆 of 𝑛 training samples, each with (at most) 𝑚
features, and 𝑤 distinct output classes. Processing the 𝑖th sample, its
𝑞th feature value is mapped to a concept component 𝐶𝑖,𝑞 constructed
over 𝐴𝑞,𝑗𝑞 in the reference ontology, which is the subclass in the
partonomy for 𝐴𝑞 containing the particular feature value. For the sake
of conciseness, the definition of concept components and details for
constructing them in [12] are not recalled here. Overall, the 𝑖th sample
∀ 𝑖 = 1,… , 𝑛 is composed of: (a) up to 𝑚 concept components 𝐶𝑖,1,… , 𝐶𝑖,𝑚
annotating its features; (b) an observed output 𝑂𝑖 labeled with a class
name in the ontology. Samples are processed sequentially in order to
build the TM, which is a (𝑤+1)×(𝑘+1) matrix. All the different output
classes are in the first column while the 𝑘 distinct concept components
occurring in the training set are in the first row. Each element of the
TM represents the number of occurrences of the column header concept
449
Table 1
Example training set.

Temperature Humidity Output

17 40 Spring
21 60 Spring
3 20 Winter
8 50 Winter

Table 2
Example training matrix.

HighHum. LowHum. HighTemp. LowTemp. O

1 1 2 0 Spring
1 1 0 2 Winter

component in the samples having the row header output. Basically, the
construction algorithm (detailed in [12]) takes the 𝑖th training sample
and first checks its output class 𝑂𝑖: if no previous sample has been
associated to that class, it appends a row to the TM setting its values
to zeros. Analogously, for each concept component 𝐶𝑖,𝑗 , if no previous
sample includes it, then the algorithm appends a column to the TM
and sets its values to zeros. Finally, the algorithm increases by 1 the
value of the cell corresponding to 𝑂𝑖 and 𝐶𝑖,𝑗 . Continuing the above
example, suppose two output classes exist, named Spring and Winter,
and the training dataset contains the four samples shown in Table 1.
Then the TM is computed as reported in Table 2.

Build OWL Model (BOM). Once the TM is built, the model can
be generated to be used for prediction tasks by means of semantic
matchmaking, as explained in [12]. Basically the model consists in an
 expression 𝐸𝑖 for each output class 𝑂𝑖, given from the logical
conjunction of concept components 𝐶𝑖,𝑗 appearing in the TM row of 𝑂𝑖.
In order to improve model accuracy, Mafalda defines a set of dynamic
thresholds over each row and each column of the TM in order to
exclude from the expression the concept components which occur too
infrequently [12]. These thresholds are the subject of hyperparameter
optimization for model refinement, in which typical techniques can be
applied [17]. Anyway, the final model is just a set of high-level formal
OWL 2 expressions, summarizing even large datasets in a compact and
meaningful way. In the running example, supposing for the sake of
simplicity a fixed threshold 𝜃 = 0.7 is adopted for all rows and columns
of the TM, the HighHumidity and LowHumidity concept components
are discarded for both output classes, as they have a frequency of
1

1+1 = 0.5 < 𝜃. Therefore the final trained model consists in the

following pair of OWL class expressions:

• Spring ≡ HighTemperature
• Winter ≡ LowTemperature

Aggregation for federated learning. As recalled above, the TM is
an intermediate structure which summarizes – and anonymizes – input
data exploiting a reference domain ontology. This work leverages one
of its fundamental properties: if a training set is partitioned in two or
more subsets and the corresponding TMs are generated, they can be
aggregated simply by summing the values in cells corresponding to
the same concept component and the same output class, e.g., in our
running example, the cells for Spring row and LowHumidity column
can be summed across multiple TMs. The result will be identical to
the generation of a single TM from the whole training set. Based on
this property, the algorithm supports federated learning by aggregating
TMs computed locally by different nodes and summing them, without
exchanging training data, as pictured in Fig. 1. Additionally, the fact
that the trained model consists in a set of OWL 2 individuals for the
various output classes allows a second (optional) level of aggregation
in federated learning, basically given by the conjunction of sets of
individuals generated by independent nodes but referring to the same
domain ontology. The latter method, also shown in Fig. 1, grants even
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Fig. 2. Example ontology.

smaller data exchanges, by establishing a unified knowledge base from
the collective knowledge of the various nodes.

Overall, the adopted Mafalda algorithm enables:

• incremental learning, in which training samples can be processed
in batches: for each batch the same TM is updated, and at the end
of each batch a new model is generated from the TM;

• federated learning, where individual nodes process different yet
homogeneous datasets (i.e., referring to the same ontology) and
construct independent TMs. Each TM is then used in two ways:
(i) define a model for carrying out predictions locally; (ii) send
the TM to an upper-level aggregator, which will combine multiple
TMs into a single one and generate a (presumably more accurate)
model. This approach can be applied recursively with two or
more levels of aggregation, and both the TM and the model
generated at an upper level can be fed back to lower-level nodes,
in a continuous loop aimed to improve performance as well as
follow possible drifts and long-term dynamics of the monitored
phenomenons.

While the work in [12] hinted at the possibility of federated learning
for Mafalda but did not formalize it, this work exploits the original
algorithm by constructing on top of it a serverless federated learning
framework, which expands the cloud-to-edge continuum to include IoT
field devices as computational nodes capable of running both training
and inference tasks.

2.2. Related work

This subsection analyzes relevant works concerning serverless com-
puting in the cloud-to-edge and cloud-to-thing continuum, as well as
IoT-oriented federated machine learning.

2.2.1. Serverless computing in the cloud-to-edge continuum
Cloud–edge [18] computing has emerged as an innovative paradigm

aiming to address the diverse and evolving demands of modern ap-
plications and services. The cloud-to-edge continuum [19] framework
extends from localized edge devices to centralized cloud infrastruc-
tures, enabling seamless data and task flow across the cloud–edge
interface. For instance, [20] describes a unified resource orchestration
strategy for effectively managing cloud–edge resources, treating them
as a single abstracted entity for executing distributed services. At the
network edge, nodes process data in real-time to minimize latency and
network bandwidth usage. Conversely, centralized cloud infrastructures
offer extensive computational power and storage for demanding tasks.
Bridging these extremes into a continuum enhances performance, by
tailoring architectural designs to the specific requirements of different
applications, distributing data and processing tasks across the network.

Recent research has focused on the integration of edge and cloud
technologies in several areas like cyber–physical systems [4,21], health-
care [22] and intelligent transportation systems [23]. Nevertheless,
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cloud–edge computing architectures pose several challenges: (i) reduc-
ing latency is a primary goal, but achieving ultra-low latency between
edge and cloud in real-world scenarios can be challenging due to vary-
ing network conditions and processing demands; (ii) as the number of
edge devices and applications increases, managing scalability becomes
a significant challenge, as edge infrastructures must be able to handle
the dynamic growth in data processing requirements while maintaining
performance and reliability; (iii) edge devices generate large volumes of
information requiring an efficient data management, i.e., deciding what
data to process locally, what to transmit to the cloud, and how to store,
retrieve, synchronize and orchestrate data effectively.

Combining compute continuum architectures with serverless frame-
works represents one of the more promising research areas. Compared
with traditional cloud computing approaches, serverless computing [8]
aims to create dynamic environments where both infrastructure and
platforms in which the services are running are hidden from cus-
tomers. In this way, users of cloud services can invoke the desired
functionality of their application only paying for the resources they
actually use. The invocation of the functions is delegated to one of
the available computation nodes (e.g., cloud containers, decentralized
edge environments or specific IoT devices) and the obtained results
are sent back to the user. The fusion of serverless architecture with
the cloud-to-edge continuum holds a great potential in the field of
IoT-based federated learning scenarios [24]. By deploying serverless
functions strategically across the continuum, edge devices can perform
initial model training, leveraging their proximity to data sources. On
the contrary, resource-intensive tasks like model aggregation and global
updates can be executed in the cloud. This approach optimizes the
federated learning workflow, while reducing the burden on individual
edge devices and ensuring low-latency data processing thanks to the
virtually unlimited computational resources available in the cloud.

2.2.2. IoT-oriented federated machine learning frameworks
New challenging application scenarios based on the cloud-to-edge

continuum are emerging in the field of distributed intelligence [25].
The rapid dissemination [26] of IoT infrastructures and the require-
ments for low-latency, fault-tolerant and secure processing has moti-
vated the development of edge analytics services.

A basic architecture for the orchestration of containerized microser-
vices and cloud–edge intelligence was proposed in [4]. It is based on
Osmotic Computing principles [2] allowing data mining with predictive
Machine Learning models trained and executed on edge and on cloud,
exploiting computational resources opportunistically to reach the best
prediction accuracy. However, the proposed work did not fully utilize
IoT devices for either training or inference. Additionally, the architec-
ture did not employ federated learning approaches, as the data needed
to be sent to centralized locations for processing.

In [27], a novel cloud–edge AI framework and architecture was
presented to enhance ML efficiency, focusing on reducing transmission
latency and bandwidth consumption. By means of container orches-
tration, the framework efficiently manages task allocation and data
processing. It employs a specialized BranchyNet Deep Neural Network
(DNN) model with early-exit branches for rapid inference on edge
devices, optimizing response times and system load. Nevertheless, IoT
devices within this framework are used only as data stream sources,
being able to run neither training nor inference tasks.

FLoX [28] is a federated learning framework aiming to train and
deploy neural network models over heterogeneous and distributed
computing resources. It is built on the funcX [29] federated serverless
computing platform in order to decouple FL model training/inference
from infrastructure management. In this way, users can easily deploy
models on different network devices. The approach is rather similar to
this work, but it does not include training or inference on IoT devices.

The work in [30] also exploits funcX for defining Rural AI, a
prototype system based on a federated Function-as-a-Service (FaaS) ar-
chitecture aiming to demonstrate the capabilities serverless computing
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Table 3
Related works comparison.

Reference COTS tools FaaS FL Cloud AI Edge AI IoT AI

[4] ✓ ✗ ✗ ✓ ✓ ✗

[27] ✓ ✗ ✓ ✓ ✓ ✗

[28] ✓ ✓ ✓ ✓ ✓ ✗

[31] ✓ ✓ ✓ ✓ ✓ ✗

[32] ✗ ✓ ✓ ✓ ✓ ✗

This work ✓ ✓ ✓ ✓ ✓ ✓

offers to traditional FL in rural precision agriculture scenarios, often
characterized by limited and unreliable networking infrastructures.

Similar approaches are also in FedLess [31], a serverless framework
for training and using DNN models on heterogeneous FaaS platforms,
and in the Serverless Hierarchical Federated Learning (SHFL) frame-
work [32], which adopts a two-layer FL architecture where nodes are
grouped into clusters under cluster heads exchanging the local model
parameters among a neighborhood of workers.

Even though the aforementioned frameworks provide several ben-
efits, they all exhibit some limitations w.r.t. the proposed approach,
as summarized in Table 3. The framework described in this paper is
the only one which simultaneously grants: (i) serverless Function-as-a-
Service architecture; (ii) support for federated learning; (iii) AI train-
ing and inference in cloud, edge and IoT nodes; (iv) implementation
facilitated via COTS software tools.

3. Proposed framework

The proposed approach relies on serverless computing to define a
cloud-to-thing framework for data collection, ML model training, and
inference. The proposal aims to achieve three key properties:

1. Federated learning flexibility: the federated learning work-
flows extend to IoT devices as nodes for ML training and infer-
ence, harnessing the Mafalda algorithm recalled in Section 2.1.

2. Unified execution: functions can seamlessly run in the cloud,
in on-premise edge devices and in IoT devices with minimal to
no difference in code.

3. User and device transparency: the infrastructure operates
transparently for users and devices. This means that nodes have
the capability to collect and dispatch data to either local edge
devices or the cloud endpoint, with the response remaining
consistent, regardless of the processing device.

Further details on the proposed framework are discussed in the
ollowing sections. While description details refer to federated learning
cenarios for the purpose of clarity and accuracy, the core architecture
resented in Section 3.1 is basically general-purpose, as it can support
istributed serverless functions for any type of application involving
oT, edge and cloud layers.

.1. Architecture

Fig. 3 depicts a high-level conceptual representation of the archi-
ecture, which encompasses the cloud infrastructure, edge devices and
oT field nodes. Specifically, it includes the following components:

• Cloud Provider: has the responsibility of efficient provisioning
and elastic scaling of the underlying cloud infrastructure.

• Edge Node: scaled-down counterpart to traditional cloud data
center, delivering computation, communication, and storage ca-
pabilities.

• Field Device: IoT node characterized by a lightweight Real-Time
Operating System (RTOS) as well as limited computational and
energy resources.
451
Fig. 3. Reference framework architecture.

• Cloud/Edge IoT Group: defines a set of field devices, connected
either to the global cloud provider or to a local edge Node. Mutual
authentication and authorization mechanisms are enforced, using
certificates to manage roles and permissions for publishing and
reading messages on available topics.

• Function Runtime: executes the stateless tasks in the Cloud
Provider or in the Edge Node for the federated learning workflow
in an event-driven and distributed manner. In Field Devices the
same functions map to RTOS threads directly, for more efficient
resource usage.

• Storage: stores the collected data and the machine learning mod-
els used for federated learning tasks. In federated learning scenar-
ios, data is often partitioned into smaller, manageable batches to
optimize communication efficiency. In particular, Cloud Storage
holds the latest and most complete version of the federated learn-
ing model in persistent memory, whereas Local Storage acts as a
cache: if an Edge Node must carry out a prediction task but lacks
a local model, it retrieves the one from Cloud Storage.

• Message Broker: orchestrates event-driven message transmission
and reception over the MQTT (Message Queuing Telemetry Trans-
port) standard protocol (https://mqtt.org/), adopting the pub-
lish/subscribe paradigm. Nodes publish packets to specific topics,
and the message broker routes received messages to subscribed
services.

• Task Scheduler: it can invoke serverless functions in accordance
with user-configured policies or timers. The main role in the
proposed architecture is to invoke the Update Model function
periodically, in order to decouple updates to the aggregated data
for federated learning (in Mafalda’s case, Training Matrices) from
the task of training a new version of the ML model. Other triggers
can be configured to activate the function, such as events related
to the connection/disconnection of nodes in the architecture,
requests from Field Devices or Edge Nodes, or when a certain

amount of data is uploaded to the Data Store.

https://mqtt.org/
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A noteworthy feature is the capability to perform machine learning
tasks not only on edge nodes but also on IoT devices, without depend-
ing on the cloud infrastructure. This flexibility ensures that outcomes
remain consistent, with variations primarily in response times. The
following functions are executed in the Function Runtime:

• Process Data: the primary task is to read the data published by
Field Devices. This function plays a pivotal role in the frame-
work’s data processing pipeline, ensuring that incoming data is
efficiently archived in the Data Storage component for subsequent
model updates and inference. The function is invoked for each
incoming message from the train MQTT topic;

• Update Model: enhances predictive capabilities over time
through incremental learning from newly available data batches.
It retrieves locally stored data batches from the Data Storage,
and performs an incremental model update, as described in
Section 2.1. By adopting a mini-batches approach for incremental
updates, the model can be trained in short, lightweight bursts
of computation, complying with the execution time and memory
constraints of serverless functions. The updated model is saved
into the Model Storage. This function is started periodically by
the Task Scheduler service.

• Test Model: the function responds to MQTT test messages
containing labeled samples for prediction. It utilizes this data to
calculate a confusion matrix and evaluation metrics, including
precision, recall, F1-score, and overall accuracy for the most
up-to-date model available on the node.

• Predict: responds to MQTT predict messages, which contain
a series of unclassified samples, by delivering the classification
results based on the most up-to-date model available on the node.

In order to validate the proposed serverless architecture, an off-the-
shelf infrastructure based on AWS technologies has been employed for
implementing all the components in a complete prototype, as shown in
Fig. 4:

• IoT Core: as the central component of the architecture, the AWS
IoT Core (https://aws.amazon.com/it/iot-core/) service is respon-
sible for managing MQTT communications, device provisioning,
and authentication within the network. It can interface with and
manage both on-premise IoT device groups and edge nodes, which
in turn can manage other IoT device groups.

• Model Storage: the Amazon S3 (https://aws.amazon.com/s3/)
object storage service is used to store and manage ML mod-
els. When an updated model is loaded, it replaces the previous
version.

• Data Storage: the DynamoDB (https://aws.amazon.com/dynam
odb/) scalable NoSQL key–value database handles data storage
in the form of batches. A configurable batch ageing policy is
established to limit the amount of relevant data stored for model
training and update.

• Lambda Functions: a set of AWS Lambda (https://aws.amazon.
com/lambda/) functions has been defined to map the aforemen-
tioned four tasks: process data, update model, test model, and
predict. These lambdas are invoked and executed in the same
way both in the cloud and on edge nodes. Moreover, the same
source code implementing the Mafalda algorithm is exploited
to run functions locally in Field Devices on data collected from
available sensors. Further implementation details are provided in
Section 5.1.

• Scheduler: the AWS EventBridge (https://aws.amazon.com/event
bridge/) service enables real-time data change notifications from
AWS services, personal applications, and Software as a Service
(SaaS) applications without coding. In the architecture, AWS
EventBridge serves as the Task Scheduler component, orchestrat-
ing and triggering lambda functions automatically, based on a
pre-configured timer.
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Fig. 4. Proposed AWS-based prototype architecture.

• Edge device: a sufficiently capable edge device, such as a single-
board computer or a PC, acts as AWS IoT Greengrass (https://aws.
amazon.com/greengrass/) CoreDevice to run Greengrass services
and manage its IoT device group.

• Greengrass Deployment: A group of components executed on
AWS CoreDevices, including:

– Nucleus: manages the device’s lifecycle and control com-
munications with the cloud.

– PubSub IPC: enables event-driven distributed Inter-Process
Communication (IPC) among the internal components
within the Greengrass node.

– Moquette: a local MQTT broker allocated for the subnet.
– MQTT Bridge: serves as an intermediary for MQTT mes-

sages among Moquette, PubSub IPC and AWS IoT Core,
enhancing communication within the Greengrass ecosystem
and connecting it to the broader AWS infrastructure.

– Process Data, Update Model, Test and Predict: the cor-
responding Lambdas imported into the device that react to
messages received on the local broker.

– Local Data Store: managed through a local instance of
DynamoDB, serves the dual purpose of storing the data
batches received from the train topic and the updated
models received from the cloud.

– IPDetector: A component that manages the Cloud Discovery
procedure.

Details on how these components interact in the training and test-
ing/prediction phases of serverless federated learning are explained in
the following two sections.
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Fig. 5. Model training sequence diagram.

.2. Training

This section describes the sequence of operations outlined by the
raining task, managed through the Process Data lambda function
ithin the framework described in Section 3.1. Fig. 5 sketches the se-
uence diagram of operations and interactions among cloud/edge/field
omponents: numbered steps are outlined in what follows.

1. The Field Device (FD) locally performs preprocessing on sensor
data within a temporal window. During this phase, the interme-
diate aggregated data structure is generated, i.e., the Training
Matrix (TM) in case of Mafalda, or a local classification model
is trained as described in Section 2.1.

2. The FD publishes a message serialized in binary format on the
train MQTT topic. Depending on application-specific concerns
about privacy and bandwidth availability, the federated learning
framwework is configured so that the message contains either
the training data batches, the Training Matrix or the local clas-
sification model, as shown by the two alternative sequences in
Fig. 5.

3. The message triggers the execution of the Process Data function
on the Edge Node or Cloud Provider managing the IoT group of
the FD, which compresses and stores the received data on the
relevant data/model store. The architecture does not constrain
the way FDs are associated: for configuration simplicity, in the
current AWS-based prototype the association is static either to
an Edge Node in the local network or to the cloud, but proper
dynamic criteria can be considered for future revisions.

4. Upon completion, the Process Data function publishes an ac-
knowledgment message, notifying the FD of the task conclusion.

Independently from the data upload phase, there exists a model
pdate phase, which allows updating the ML model to achieve a more
ccurate version based on the whole dataset available in the Data Store.
ig. 6 illustrates the sequence diagram of the interactions among the
453

omponents.
Fig. 6. Model update sequence diagram.

1. The invocation of the Update Model serverless function is man-
aged by the AWS EventBridge (https://aws.amazon.com/eventbr
idge/) component, a serverless event router which periodically
schedules an event to trigger the function in the cloud.

2. The function retrieves the most recent TMs and models from
the Model Store (managed through an S3 instance), along with
the available data from the Data Store (managed through Dy-
namoDB). TMs sent by IoT or edge devices are also retrieved
from the Model Store at that time, in order to perform TM
aggregation. The aggregated TM is used to generate the overall
updated model, which is aggregated with Device Models and
sent back to the Model Store. This aggregated model will be used
for future prediction and training tasks.

3. Upon conclusion, cloud Update Model function sends a message
on the update topic.

4. On the Edge Node, the same Update Model function is invoked
upon the arrival of a message on the update topic, to update
the reference model with the data available on Edge Data and
Model Store. Initiating simultaneous updates from multiple de-
vices can lead to write conflicts to the Model Store. To reduce
the likelihood of conflicts, the function waits for a random in-
terval before execution. Additionally, an Optimistic Concurrency
Control strategy is adopted: the model is overwritten only if the
object’s version number has not changed from the initial read to
the moment of writing the updated model. In case of a conflict,
the training must be repeated on the new version.

5. The updated model is stored in the Local Model Storage of the
Edge Node, which, as previously described in Section 3.1, plays
the role of caching objects locally to reduce frequent access to
the Cloud storage. Finally, the function sends the updated model
to the cloud-based Model Store.

Serverless runtimes are typically configured to execute functions

for short periods of time. In AWS Lambda execution time is capped

https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/


Future Generation Computer Systems 155 (2024) 447–462D. Loconte et al.

g
T
l
U
r
d
a
A
e
l
b
S
E
t
t

Fig. 7. Predict and Test functions on cloud.

at 15 min. To address this limitation, it is possible to allocate larger
amounts of resources to more intensive tasks such as the Update Model
function.

3.3. Testing and prediction

This section provides a detailed overview of the workflow for car-
rying out ML inferences on distributed models, such as performing
classification tasks to predict events based on sensor data connected
to FDs. The sequence diagram in Fig. 7 shows the workflow in the case
of cloud execution.

1. The Field Device, following data processing like in Section 3.2,
publishes a message on the predict (respectively, test) topic.

2. The corresponding function is initiated in the cloud. The Predict
(resp. Test Model) function retrieves the latest trained model
instance from the Model Store, carries out classification (resp.
evaluation), and dispatches the outcome as a message to the
result topic.

When performing prediction or testing on the edge side, the se-
quence of operations becomes more complex, as illustrated in the
sequence diagram in Fig. 8. Specifically, upon receiving a message on
the predict (resp. test) topic, the Edge Node function initiates its
workflow by attempting to retrieve the training model from the Local
Data Storage, which operates as a cache, as elaborated in Section 3.1.
Two alternative execution flows are possible:

• if the model is available locally, the function directly loads it to
carry out the prediction (resp. test) task, mirroring the previous
scenario;

• if the model is not in the cache, the function must then retrieve
it from the cloud-based Model Store. This action incurs latency
and data network traffic penalties. Once obtained, the model is
cached to streamline future runs, before executing the requested
prediction (resp. test) and returning the results.

4. Portability

AWS has been selected as the technology provider for the proto-
typical implementation of the proposed framework, due to its compre-
454

hensive feature set, which has allowed to map directly all components
Fig. 8. Predict and Test functions on edge.

of the architecture to available building blocks at the IoT, edge and
cloud layers. However, it is essential to note this is not a mandatory
choice. The same framework is portable to other providers by sub-
stituting the adopted managed services with equivalent offerings. The
considerations below summarize some relevant examples of available
offerings, but many other players exist in the serverless computing and
cloud-to-thing services markets and they are accelerating their pace
of innovation, therefore new or improved off-the-shelf solutions can
become available.

Microsoft Azure includes Azure Functions supporting multiple lan-
uages, Azure Service Bus for message management, Blob Storage and
able Storage for data storage, and Azure IoT Edge for deploying work-
oads on edge devices with enhanced device management capabilities.
nlike AWS Greengrass, Azure IoT Edge requires user’s code to be

un in containers: this can limit the choice and increase the cost of
evices to be used as IoT Field Devices. Conversely, Azure IoT Edge
utomatically manages multiple-level hierarchies of devices, whereas
WS Greengrass requires the user to configure the device group hi-
rarchy: this can be an important feature for large-scale federated
earning applications. IBM Cloud services include IBM Cloud Functions
ased on OpenWhisk,1 IBM Event Streams using Kafka,2 IBM Cloud Object
torage and Cloudant –based on CouchDB3– for data storage, and IBM
dge Application Manager for managing edge device services, similar
o Azure IoT Edge, with additional support for serverless computing
hrough Edge functions. Edge computing solutions rely on the IBM Cloud

Satellite service for managing hybrid cloud deployments, which is more
powerful but more complex than AWS Greengrass or Azure IoT Edge.

1 Apache OpenWhisk: https://openwhisk.apache.org/.
2 Apache Kafka: https://kafka.apache.org/.
3
 Apache CouchDB: https://couchdb.apache.org/.

https://openwhisk.apache.org/
https://kafka.apache.org/
https://couchdb.apache.org/
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Other Platform-as-a-Service offerings, focused on the cloud-to-edge
and the cloud-to-thing continuum, have been introduced recently. For
instance, Particle4 provides a cloud-based management platform for
devices running their Device OS, which simplifies user applications
ntegration into firmware and lifecycle management. Similarly, the
rancino5 [33] platform comprises: (i) a family of open-hardware
ual-board devices, which can perform as edge computing devices as
ell as IoT field devices for sensing and actuation; (ii) a cloud-based IoT
anagement platform grounded on OpenStack. EdgeImpulse6 supports

loud-to-edge ML training and can integrate Arduino7 microcontrollers
or inference tasks.

Ideally, the machine learning deployment framework should en-
ompass several key characteristics: support for incremental learning,
ederated learning, and capabilities for both training and inference from
loud to IoT environments. Additionally, an important requirement is
hat the framework’s installation size must be sufficiently compact to
it within the constraints of a serverless function runtime. Specifically,
or AWS Lambda, this means the compressed package size must be kept
nder 50 MB.

A significant gap has been identified in this regard, as there is a
ack of a comprehensive framework that encompasses all these essential
eatures, which becomes evident when considering the capability for
oth training and inference on IoT environments. For the deployment
n cloud-to-edge, some state-of-the-art libraries such as scikit-learn8

an be easily integrated into an AWS Lambda function, however larger
rameworks such as TensorFlow9 and PyTorch10 exceed size limits

and are not as easily integrated. TensorFlow Lite is exploitable for
inference and fine-tuning on both cloud and edge devices, but its
models can be run on IoT field devices only for inference.

5. Case study: federated learning for activity recognition

In order to clarify the proposal and highlight its features, a proto-
typical testbed has been fully developed for a federated learning case
study concerning the domain of activity recognition. Activity recognition
holds significant relevance, since its applications span from health and
fitness monitoring to smart homes and public safety, encompassing the
ability to discern human activities like standing, walking, running, and
more. This case study aims to illustrate how the proposed federated
learning framework, with its decentralized model training approach,
can be applied to an activity recognition dataset.

5.1. Prototype deployment

The prototype closely adheres to the description provided in Sec-
tion 3.1. It includes: 1 AWS Cloud Provider node, 1 Edge Node, 3 IoT
Field Devices attached to the Edge Device and 3 IoT Field Devices
attached directly to the Cloud Provider node. The deployment strategy
has followed a top-down approach, started by configuring the cloud
infrastructure on AWS, then by provisioning the Edge Device, and
finally by programming the Field Devices.

In the cloud infrastructure setup, the primary focus has been on
developing the four AWS Lambda functions described in Section 3.1.
Each lambda has been programmed and packaged in a standalone
.zip archive, and subsequently uploaded to the cloud using the AWS
Console. The Lambda functions responsible for data processing, model

4 Particle: https://www.particle.io/.
5 Arancino: https://arancino.cc/.
6 EdgeImpulse: https://edgeimpulse.com/.
7 Arduino: https://www.arduino.cc/.
8 Scikit-learn: https://scikit-learn.org.
9 TensorFlow: https://www.tensorflow.org/.
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PyTorch: https://pytorch.org/.
updating, and prediction are configured to be triggered by their cor-
responding MQTT messages, meanwhile the Update Model function is
scheduled for periodic invocation through Amazon EventBridge.

Field and Edge devices have been organized into IoT Groups at this
stage. Within these groups, the necessary permissions and policies have
been outlined, authorizing the nodes to access relevant resources. This
includes authorizing the connectivity to Cloud MQTT Broker and al-
lowing Edge Nodes to authenticate edge devices within their respective
group.

To guarantee seamless compatibility between edge and cloud
Lambda runtimes, certain requirements must be carefully considered
during the Lambda development process. Specifically, the following key
considerations must be kept in mind:

• Lambda functions should be either uploaded as standalone .zip
files, with a maximum file size of 50 MB, or developed di-
rectly using the inline code editor in the AWS Console. This is
crucial because AWS Greengrass service does not support alter-
native Lambda formats, such as layered packages and container
functions;

• the chosen runtime for the Lambda function must be compatible
and available with both AWS Greengrass CoreDevice and the AWS
Lambda execution environment;

• if the Lambda package includes native code – such as libraries
that have bindings to native libraries – it is crucial to align the
CPU architecture of the cloud Lambda runner with that of the
edge device. As an alternative, separate Lambda functions should
be deployed for each distinct CPU architecture to be supported.

To meet these requirements, Python (version 3.9) has been selected
as the programming language to implement the aforementioned func-
tions. This language ensures compatibility across both edge and cloud
environments. Additionally, the aarch64 ARM 64-bit architecture has
been chosen for Cloud Provider node instances to match the CPU ar-
chitecture of the Edge Node. The Mafalda tool, originally implemented
in Java [12], has been re-implemented in C with a Python wrapper: its
compactness (357 kB overall, libraries included) is a beneficial feature,
as it helps minimize the package size, thereby reducing load times.

For the Edge Node, a Raspberry Pi 4 Model B11 hosts the GreenGrass
CoreDevice service. This service enables remote control and monitoring
of the Edge Device from the AWS Console, as well as the deployment
of custom components. In a nutshell, CoreDevice provisioning can be
split in two key parts:

1. Setup of the Operating System: installation of Raspbian OS
Bullseye (version 11) is required, along with OpenJDK version
11.0.20, to meet the prerequisites of the AWS Greengrass Core-
Device installer.

2. AWS Console CoreDevice Setup: configuration of the CoreDe-
vice software is performed via the AWS Console, which allows
to download the installer package. Executing this installer on the
Raspberry Pi completes the setup process.

Upon edge device registration, the configuration described earlier
in Section 3.1 can be imported. This is achieved in two steps:

1. import the four Lambda functions into AWS Greengrass as Com-
ponents;

2. create a new Greengrass Deployment with all the parts listed
in Section 3.1, and specifically in Fig. 4, including the newly
created four Lambda Components;

Minimal component configuration is mandatory to complete the
CoreDevice setup, specifically:

11 ARM® Cortex®-A72 Quad-Core CPU @ 1.5 GHz, 8 GB of RAM, and 32 GB
of Secure Digital (SD) storage memory.

https://www.particle.io/
https://arancino.cc/
https://edgeimpulse.com/
https://www.arduino.cc/
https://scikit-learn.org
https://www.tensorflow.org/
https://pytorch.org/
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Fig. 9. IoT Field Device firmware.

• the Nucleus authentication component requires permissions to
enable the IoT Group to both publish and subscribe to MQTT
topics;

• MQTT Bridge needs to be configured to relay messages from client
devices (i.e., train, test and predict topics) to the PubSub
broker and messages from Lambda functions (with result topic)
to the local MQTT broker, allowing client devices to communicate
with Greengrass component;

• setup local MQTT topic to trigger Lambdas on the edge device;
• specify the local MQTT broker endpoint to the Greengrass Discov-

ery API.12

The last task has been needed to develop FDs firmware, whose ar-
hitecture is shown in Fig. 9. It is designed following a layered software
rchitecture. Starting from the bottom layer, the reference development
oard chosen for this experimentation has been the STM32 Discovery
it IoT Node B-L4S5I-IOT01A, having the following hardware configu-
ation: STM32L4S5VIT6 Micro Controller Unit (MCU) with 120 MHz
rm Cortex-M4 core; 2 MB of flash memory; 640 kB of SRAM; wireless
onnectivity with Wi-Fi, NFC and Bluetooth Low Energy (BLE); a wide
ange of sensors, including a gyroscope, accelerometer, magnetometer,
roximity, pressure, humidity and a microphone; embedded ST-LINK
ebugger and programmer.

Drivers are the lowest layer of software. They include:

• Hardware abstraction Layer, specific for the processor, which
provides human-readable names and functions to access hardware
components of the MCU;

• Board Support Package, specific for the board, which provides
higher-level interfaces to access sensors and hardware features;

• Network Driver for the ISM43362-M3G-L44 Wi-Fi module of the
board, providing a complete TCP/IP network stack (mandatory
requirement to support AWS Greengrass);

• Common Micro-controller Software Interface Standard (CMI-
SIS), which is a set of standard APIs and interfaces for ARM
microprocessors to promote code reusability and interoperability
across MCU vendors.

CMSIS is specifically required by FreeRTOS+ (https://www.freert
s.org/FreeRTOS-Plus/) which is the main building block of the up-
er software layers. FreeRTOS is composed by the FreeRTOS kernel

12 https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-
iscover-api.html.
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and some utility libraries. The FreeRTOS kernel provides concurrency
as well as primitives and data structures for synchronization (Mu-
texes, Semaphores, Timers, Queues...). FreeRTOS+ libraries include: (i)
corePKCS11, implementing a subset of the PKCS11 API to access crypto-
graphic objects; (ii) coreMQTT, providing a MQTT client; (iii) coreHTTP
and coreJSON to serialize/deserialize HTTP and JSON messages, re-
spectively. ARM mbedTLS is an additional library needed to support
mutual authentication mechanisms and encrypted communications,
which are mandatory when communicating with AWS IoT Core and
GreenGrass CoreDevice. The IDE of choice has been STM32CubeIDE,
provided by the board vendor, with the X-Cube-AWS expansion pack
that provides ports of the aforementioned FD building blocks.

Manual porting has been required of the other components, namely:

• Mafalda [12] and the Tiny-ME C [10] reasoning engine libraries
have been ported to STM32 in order to support on-device ML
training and inference;

• Process data, Update Model, Test Model and Predict tasks,
described in Section 3; unlike the edge and cloud functions, which
are invoked via MQTT messages, here the tasks are triggered
when new sensor data are acquired.

The firmware, developed exclusively in C, is uploaded on the device
using the ST-LINK Programmer. To correctly provision the device, and
specifically to be authenticated into AWS IoT Core, it is necessary to
follow this procedure:

• provision the secure element and retrieve the client certificate;
• sign and upload the firmware to the device;
• create a new thing on AWS IoT Core with the certificate from the

secure element;
• attach policies to the certificate allowing the relative device to

connect and subscribe to MQTT Brokers;
• add the device to the IoT Group;
• add the node to the Discovery API list on Greengrass;

Upon completion of these steps, all devices in the final prototype
can communicate through an encrypted and authenticated connection.

5.2. Reference dataset

To illustrate the usefulness of the proposed federated learning
framework, a small case study has been developed leveraging the
MotionSense [13] dataset, which is publicly accessible under the Open
Data Commons Open Database License (ODbL) v1.0 on Kaggle.13

MotionSense comprises accelerometer and gyroscope sensor data
collected from iPhone 6s devices through the Core Motion API.14 Specif-
ically, the dataset consists of the following sensor measurements:

• Attitude: device orientation in terms of roll, pitch, and yaw;
• Rotation Rate: angular velocity of the device;
• Gravity: acceleration vector relative to gravity, expressed in the

device own reference frame;
• User Acceleration: acceleration imparted to the device by the

user.

Each type of sensor measurement is captured independently for each
axis, for a total of 12 features.

These data were gathered from 24 different participants, each in-
structed to perform one of six activities: going downstairs, going up-
stairs, walking, jogging, sitting and standing. Each individual per-
formed 15 different trials, during which the data were collected at

13 https://www.kaggle.com/datasets/malekzadeh/motionsense-dataset.
14 https://developer.apple.com/documentation/coremotion/

cmdevicemotion.
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50 Hz sampling rate. Additionally, the dataset includes a label indi-
cating which of the six activities was performed by the subject during
the data collection process. MotionSense has been chosen in this work
because it represents a realistic use case of data collection from multiple
field devices, as the iPhone 6s could be replaced by a smaller wearable
device. It can be assumed that each device monitors the activities of a
subject.

Data have been preprocessed by aggregating 50 individual samples,
corresponding to one second of data, into a single composite sample,
incorporating both the mean and the standard deviation for each
sensor across all its axes, thus resulting in 24 distinct features. It is
important to note that this data aggregation was performed prior to
the transfer of data to the designated field devices, thereby simplifying
subsequent experimental procedures. In practical applications, the field
devices are expected to conduct such preprocessing tasks in real-time.
Consequently, it is essential that the computational requirements are
compatible with the capabilities of the reference MCU. A preliminary
test conducted with an STM32 board has validated this point: the
board has been preloaded with raw data and instructed to execute
the aggregation procedure. The computation time has been found to
be, on average, 0.2 ms for each set of 50 samples, equating to one
second of data capture. Furthermore, the available onboard memory
has been sufficiently large to buffer the generated batch of samples,
in accordance with the experimental settings. These results support
the capability of the STM32 board to effectively handle the specified
preprocessing tasks.

Afterwards the preprocessed dataset has been divided by subjects.
Specifically, data on subjects 1 to 6 are reserved to perform the initial
Mafalda model selection. This model resulting from the initial data is
referred as the bootstrap model. While not strictly mandatory in the
context of this framework, hyperparameter optimization at this stage
may enhance model accuracy down the line. Also, it is reasonable to
assume that limited data are available to choose an initial model. In
any case, subsequent updates to the model are possible as more data
are collected.

The remaining data have been split among all Field Devices as
follows:

• c1: subjects 7 to 9;
• c2: subjects 10 to 12;
• c3: subjects 13 to 15;
• e1: subjects 16 to 18;
• e2: subjects 19 to 20;
• e3: subjects 21 to 24.

here FDs c1, c2 and c3 are associated to a Cloud IoT Group and FDs
1, e2 and e3 to an Edge IoT Group.

.3. Illustrative examples

The versatility of the proposed framework extends its applicabil-
ty to a wide array of use-cases, including privacy-sensitive domains
ike industrial workplace safety. In such environments, the worker
an be equipped with wearable IoT sensors that monitor movements
nd environmental conditions in real time. Each wearable could be
onfigured to either locally update its machine learning model for
mmediate inference or to send the data to an on-site edge node, such as
Raspberry Pi. This edge node could perform more complex inferences
nd, if necessary, share only the aggregated and anonymized model
pdates with a centralized cloud service. In turn, the cloud could merge
hese updates with other models received by additional edge nodes
rom multiple sites and, if necessary, perform further data analytics.

One of the key features of this framework is its flexibility, since
t offers training and inference across different layers of the network.
his multi-layer approach enables the system to be fine-tuned according
o varying requirements and limitations. For instance, if the network
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onditions are challenging or unreliable, the edge and IoT devices can
still carry on with essential monitoring and prediction tasks. Moreover,
this architecture supports scenarios where conventional cloud-based so-
lutions might fall short, such as in compliance with privacy regulations
that prohibit the fine-grained tracking of employees.

Another compelling application for this framework is in the area
of elderly care, particularly for in-home or ambient-assisted living
environments. In those settings, a network of IoT sensors could be
strategically placed around the living space or even worn by the
elderly individuals. The sensors could monitor a variety of metrics
such as movement, heart rate, and even ambient conditions like room
temperature or air quality. Like in industrial settings, these IoT devices
could either update their machine learning models locally or transmit
data to a nearby edge node for more complex analysis. An edge node
could be a dedicated home server or a smart home hub capable of ML
computations. The aggregated anonymized model data could then be
sent to a centralized cloud service for larger-scale analytics, such as
predictive health assessments or emergency event recognition.

The true advantage of this federated architecture becomes apparent
when considering the delicate balance between the need for high-
quality care and the privacy concerns often associated with monitoring
vulnerable populations. By enabling machine learning to occur at the
device or edge level, sensitive data can be processed locally, thereby
reducing the amount of personal information that needs to be sent to
the cloud, and for this reason, this approach aligns well with privacy
regulations and ethical guidelines.

Extending considerations beyond activity recognition, the proposed
federated cloud-to-thing approach offers advantages in scenarios char-
acterized by challenging network conditions. For example, considering
a remote farming setting, where network connectivity is inconsistent.
IoT sensors can be deployed throughout the farmland to monitor soil
moisture, temperature, and other vital parameters for crop health.
Analogously in smart grid systems, where network connectivity can
often be unreliable, especially in remote areas, IoT devices embedded
in transformers or substations can locally process data for anomaly
or fault detection. When network conditions allow, these devices can
send essential data to a local edge node for further analysis. This setup
ensures monitoring is performed continuously, even when connectivity
to the cloud is unstable.

6. Experiments

Following the case study described in Section 5, an experimental
campaign on real devices has been carried out to prove the feasibility
of the proposed approach and to assess its performance.

6.1. Materials and methods

The experimental testbed has been set up as described in Sec-
tion 5.1. A Raspberry Pi 4 Model B+ has acted as the edge CoreDevice,
while IoT Field Devices have been implemented with three B-L4S5I-
IOT01A boards, chosen due to their compatibility with the AWS stack.
In particular, AWS documentation provides instructions to install their
Greengrass software specifically for Raspberry Pi and B-L4S5I-IOT01A
boards have certified compatibility with AWS, meaning that STM32
provides a set of libraries to facilitate the integration with AWS IoT
Core. Using other boards or MCUs is still possible, but requires to port
FreeRTOS libraries to the new device manually, or to find existing
working ports. For instance, the Arduino and Arancino families of
development boards have a compatible implementation of FreeRTOS.15

Greengrass is generally simpler to install since it requires only a Linux
operating system on the target device and a compatible Java Runtime
Environment.

15 https://www.arduino.cc/reference/en/libraries/freertos/.

https://www.arduino.cc/reference/en/libraries/freertos/
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Fig. 10. Experimental setup — cloud only.

The first step involves data preparation, as described in Section 5.2.
riefly, data have been partitioned by subject and, for each partition,
0% of data have been held out to evaluate model accuracy. Initial data
f subjects 1 to 6 have been used to train the Mafalda bootstrap model

and select an appropriate threshold value, which has been found to be
0.11, maximizing the accuracy of the model w.r.t. the test samples of
subjects 1 to 6. The bootstrap model has been therefore loaded on the
Model Store.

In the first experiments, the Edge Node has been turned off and the
three physically available STM32 boards have been connected directly
to the cloud AWS IoT Core. Devices have been loaded with c1, c2 and
3 data subsets, respectively, and programmed to send data in batches
f 256 samples each second. The training data have been sent on the
rain topic, while test data have been sent on the test topic; they all
ave been stored into the Cloud Data Store, as explained in Section 3.2
nd Fig. 5. This setup is sketched in Fig. 10. Data has been also used
o update and test the on-board ML model.

It is useful to note that Mafalda’s accuracy does not really depend on
atch size, as training samples are processed one by one to build the
M incrementally, as explained in Section 2.1. For other algorithms,
owever, it might be necessary to determine the optimal value while
raining the bootstrap model. In this phase, FDs have logged the time
lapsed between the publish operation and the receipt of each of the
wo acknowledgements sent by the Cloud Lambda function, as shown
n Fig. 5, in order to assess network latencies. Lambda functions add
o acknowledgment messages of prediction and test the time elapsed
uring model inference, in order to profile the computational overhead
ue to Mafalda invocation.

Subsequently the configuration has been modified as shown in
ig. 11, by adding an Edge Node to the network. The same experiment
as been repeated using e1, e2 and e3 data subsets, now measuring
ommunication latencies between the Greengrass Core Device and the
Ds. All six data subsets are therefore uploaded to the Cloud Data Store.

For the last test, AWS EventBridge fires an event that triggers the
pdate Model, updating the model contained in Model Store with data

rom the cloud Data Store. Upon completion, notifications are sent to
ach Edge Node and Field Device, instructing them to perform the
pdate with their respective data. The model that has been trained with
ata from all devices is identified hereafter as the final model. This
inal model has been evaluated against the bootstrap model to assess
ny improvements in accuracy.

Overall, the test has been conducted in two phases. In the first
hase, the three available B-L4S5I-IOT01A devices have been attached
458
Fig. 11. Experimental setup — cloud and edge.

Table 4
Communication latencies for cloud-connected Field Devices (ms).

Dataset subset Overall

c1 c2 c3

First Ack.
Avg. 992 609.72 600 741.29
Max 2969 714 687 2969
Std. Dev. 725.32 51.25 52.37 472.25

Second Ack.
Avg. 47.9 47.18 47.18 46.35
Max 151 76 79 151
Std. Dev. 36.18 18.47 20.06 26.36

Total
Avg. 1039.91 656.91 647.18 787.64
Max 3000 747 758 3000
Std. Dev. 726.29 48.51 61.05 437.34

to the AWS cloud in a Cloud IoT Group. At the second stage, they have
been connected to the local network and configured in the Edge IoT
Group managed via the Greengrass Edge Node. Despite the limitation of
not having all six IoT devices simultaneously, the experimentation and
the comparisons are still valid, as: (i) the test methods in the two phases
are coherent; (ii) tests comparing the two configurations do not require
all IoT devices to be online at the same time; (iii) the final model update
occurs by processing all the six parts of the dataset mapped to the six
IoT Field Devices anyway, as explained above.

6.2. Results

Building upon the prototype described in Section 5.1 and test
methodology outlined in Section 6.1, this section reports results, fo-
cusing on three critical performance metrics: communication latencies,
processing times, and model accuracy. The aim is to assess the overall
framework performance, strengths and weaknesses and to evaluate its
applicability in real-world scenarios.

Latency metrics: Latency data contains the round-trip time be-
ween the initiation of a request and the receipt of the acknowledgment
essages, providing insights into the network overhead of data transfer

nd processing within the system. Measurement has been conducted
t the Field Device level, as they are the most directly impacted by
he communication latency. Average, maximum and standard deviation
esults are reported in Table 4 for Field Devices connected to the
loud, and in Table 5 and for edge-connected FDs. The data are visu-
lized in Figs. 12 and 13 for cloud and edge-connected Field Devices
espectively, meanwhile Fig. 14 provides an aggregated, side-by-side
omparison of overall mean network latency for the two cases.

Specifically, with reference to the interactions shown in Fig. 5, the
ows in Tables 4 and 5 represent the following latency metrics:
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Table 5
Communication latencies for edge-connected field devices (ms).

Dataset subset Overall

e1 e2 e3

First Ack.
Avg. 284.9 285.9 284.4 285.06
Max 322 310 325 325
Std. Dev. 17.59 15.87 22.16 18.7

Second Ack.
Avg. 101.63 53.2 60.1 72.61
Max 296 73 206 296
Std. Dev. 71.89 13.81 49.47 56.18

Total
Avg. 386.54 308.27 313 357
Max 596 371 467 596
Std. Dev. 76 25.71 46.78 58.58

Fig. 12. Network Latency — FD to cloud (ms).

Fig. 13. Network Latency — FD to edge (ms).

• First Ack.: the time interval between the moment raw training
data is published and when an acknowledgment for data receipt
is received.

• Second Ack.: the elapsed time between receiving the first ac-
knowledgment (data received) and the second acknowledgment
(data stored).

• Total: the cumulative time from the point of raw training data
publication to when an acknowledgment for data storage is re-
ceived.

he columns in these tables are categorized by device, each identified
y their respective data subsets. Additionally, an Overall column reports

aggregate statistics across all three devices.
As expected, the latency tests show edge computing beats cloud
459

computing in response times. The main reason appears to be the
Fig. 14. Network Latency — Comparison between FD to cloud and FD to edge (ms).

network overhead associated with the cloud infrastructure, since the
edge is located in proximity to the IoT devices and in the same network,
in contrast with the cloud which is more distant, leading to inherent
delays in data transmission.

It is worth noting the initial spike in latency observed in the cloud
node, particularly during the first invocation of the Lambda function.
This latency peak, evident under the ‘c1 Max Response Time’ metric,
can be attributed to the cold-boot problem, a known limitation in
serverless architectures. However, this limitation does not critically
undermine the proposed framework efficiency. The Edge Node has
not exhibited the cold-boot latency problem, highlighting a distinct
advantage of the Edge Lambda Runtime against the Cloud Runtime.

Processing time: computational turnaround times have been as-
sessed to understand the overhead associated with processing tasks
executed on the different nodes. Measurements have been taken di-
rectly on the node performing the computation, bypassing factors such
as Lambda startup delays and network latencies. The focus is strictly on
assessing whether Mafalda can be effectively and efficiently run across
all layers of the architecture, ensuring that the framework is not only
lightweight but also practical for real-world deployment.

In serverless computing, the configuration of resources allocated to
execute functions is a critical aspect. In AWS Lambda, the user can
control the CPU tier assigned to a function indirectly, by setting the
amount of required RAM.16 This also increases the cost per second
illed to the account17: Table 6 recalls pricing for executing Lambda
unctions in the eu-central-1 region (as of 20 December, 2023) across
ive RAM tiers using ARM CPUs. AWS charges clients proportionally
o the duration of the function. Table 7 reports on execution time
easurements and costs for three operations on the cloud for each
emory tier: downloading and decompressing a 256-batch, updating

he model with a single batch, and predicting a batch of data. The
048 MB configuration is always the fastest, as expected. However, in
erms of cost-effectiveness, the 512 MB tier emerges as the overall best
hoice. For training tasks specifically, the 1024 MB tier is the most cost-
ffective. These findings highlight the importance of function testing to
dentify the optimal cloud node configuration for specific tasks.

Table 8 and Fig. 15 compare results on the average, standard
eviation, and maximum execution time among Field Devices, Edge
evices, and the 512 MB tier Cloud Nodes.

In the experimental setup, the Edge Node has shown faster exe-
ution times compared to the cloud in terms of computational speed,
eanwhile the time required to download and prepare the batch for
rocessing is higher on edge. Both the edge and cloud infrastructures

16 https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-
power.html.

17 https://aws.amazon.com/lambda/pricing/.

https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://aws.amazon.com/lambda/pricing/
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Table 6
AWS lambda pricing in eu-central-1 region (10−7$/ms).

Memory config. (MB) ARM CPU pricing

128 0.021
512 0.083
1024 0.167
1536 0.25
2048 0.333

Table 7
Cloud node: execution time (ms) and cost (10−7$).

Memory config (MB) Retrieve batch Train on batch Predict batch Total

128 Time 285.72 448.14 193.23 927.09
Cost 6.00 9.41 4.06 19.47

512 Time 71.16 108.62 48.31 228.09
Cost 5.91 9.02 4.01 18.93

1024 Time 60.84 49.74 31.83 142.41
Cost 10.16 8.31 5.32 23.78

1536 Time 57.00 34.41 17.89 109.30
Cost 14.25 8.60 4.47 27.33

2048 Time 51.31 31.26 11.18 93.75
Cost 17.09 10.41 3.72 31.22

Table 8
Mafalda functions training and prediction performance (ms).

Retrieve batch Train on batch Predict batch

Field device
Avg. N/A 10 550 9286.2
Max N/A 10 625 9527
Std. Dev. N/A 66.67 160.51

Edge device
Avg. 166.61 68.97 26.47
Max 185.14 73.22 28.07
Std. Dev. 14.09 2.29 1.44

Cloud node
Avg. 71.16 108.62 48.31
Max 116.16 135.53 64.60
Std. Dev. 23.22 16.17 21.15

Fig. 15. Mafalda train and predict performance (ms).

ffer vertical scalability, since the Greengrass software stack can be
nstalled on more capable hardware at the edge, while the cloud AWS
ambda execution tier can be increased. A direct cost comparison is
complex task, since it should consider edge hardware and energy

ost models as well as IoT Core messaging and storage expenses.
WS charges each device a fixed cost of $0.18 per month, regardless
f its capabilities. Therefore, when the number of requests increases
ignificantly, edge devices may become more cost-effective.

An expected advantage of the cloud infrastructure is its superior
orizontal scalability compared to the edge devices, although the lim-
ted scope of this study, focusing on a small number of devices, could
ot provide the conditions under which this advantage could be clearly
xposed and measured.
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Table 9
Bootstrap model — Confusion matrix.

dws jog sit std ups wlk <– Classified as

134 3 1 4 11 12 dws
23 138 0 1 4 18 jog
0 0 431 21 0 0 sit
0 0 5 395 0 0 std
40 1 0 7 122 13 ups
91 18 7 3 25 260 wlk

Table 10
Bootstrap model — Evaluation summary.

Precision Recall F1Score Accuracy Class

0.465 0.812 0.592 – dws
0.863 0.750 0.802 – jog
0.971 0.954 0.962 – sit
0.916 0.988 0.951 – std
0.753 0.667 0.707 – ups
0.858 0.644 0.736 – wlk
0.804 0.802 0.792 0.828 Average

Table 11
Final model — Confusion matrix.

dws jog sit std ups wlk <– Classified as

128 2 1 4 5 25 dws
21 145 1 0 3 14 jog
0 0 452 0 0 0 sit
0 0 0 400 0 0 std
17 0 0 4 132 30 ups
82 5 11 2 39 265 wlk

In addition, it is possible to note how IoT devices have been able to
perform machine learning tasks, thanks to Mafalda’s ability to operate
in resource-constrained environments. Although the processing time on
IoT devices is considerably higher than both the edge and the cloud,
even when accounting for network latencies, considering that every
batch amounts to 256 s of data acquisitions w.r.t. the reference dataset,
IoT model training and prediction times can be deemed as acceptable
in a realistic scenario. The capability of Mafalda to execute on these
devices is a distinct advantage of the proposed framework. This is es-
pecially relevant in harsh or challenging environments where network
communications may be limited or unreliable, thereby enhancing the
framework versatility.

Model accuracy: finally, the effectiveness of the ML algorithm and
the impact of the federated learning environment have been evalu-
ated through prediction accuracy measurements. This addresses the
algorithm’s ability to incrementally learn across the architecture by
evaluating its accuracy metrics derived from the confusion matrix. The
evaluation consists in three steps: initially, a bootstrap model is selected
using a subset of the original dataset, as described in Section 5.2;
this model is trained and evaluated to record accuracy metrics; sub-
sequently, the same metrics are captured for the final model that has
undergone updates with partial models and data from the Field Devices.
By comparing these two sets of measurements, the analysis aims to
assess whether the framework can achieve incremental improvement.
Table 9 reports the confusion matrix for the bootstrap model and Ta-
ble 10 shows the associated performance metrics, including precision,
recall, and F1 score for each class, as well as the overall accuracy.
Tables 11 and 12 provide the same data for the final model.

The prediction accuracy has exhibited only a slight improvement
of ∼2% from the initial bootstrap model to the final checkpoint. This
modest gain can be deemed as more indicative of limitations of Mafalda
itself rather than a shortcoming of the federated learning approach.
One significant limitation is Mafalda’s need for incremental training
across all layers of the architecture without increasing its expressive-
ness, which may not optimally leverage the computational capabili-

ties at each layer. It is worth noting that the framework enables a
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Table 12
Final model — Evaluation summary.

Precision Recall F1Score Accuracy Class

0.516 0.776 0.620 – dws
0.954 0.788 0.863 – jog
0.972 1.000 0.986 – sit
0.976 1.000 0.988 – std
0.737 0.721 0.729 – ups
0.793 0.656 0.718 – wlk
0.825 0.824 0.817 0.851 Average

model update feedback loop for progressive performance improvement
in realistic applications based on continuous data streams. Further-
more, it is able to execute other ML algorithms, including neural
networks that are trained incrementally in mini-batches. However, a
careful trade-off with the computational demands of more complex
algorithms is required in order to not preclude their deployment to
resource-constrained IoT devices.

Based on the application requirements, a two-tiered approach could
also be envisioned: deploying a more expressive model on the cloud
and edge layers while retaining a less computationally intensive model
like Mafalda on Field Devices. This strategy would aim to balance the
trade-offs between computational resources and prediction accuracy,
thereby providing a good compromise between the two solutions.

7. Conclusion and future work

This paper has introduced a novel serverless computing archi-
tecture extending the cloud-to-edge continuum to Internet of Things
field devices. A federated learning framework, leveraging an existing
lightweight IoT-oriented machine learning algorithm, has been defined
on top of it. A noteworthy feature of the proposal is that IoT devices
are involved in both ML model training and prediction tasks, which are
implemented as serverless functions at the edge and in the cloud using
the same codebase as the IoT device. The complete framework has been
implemented on a prototypical testbed exploiting AWS cloud technolo-
gies, a Raspberry Pi 4 edge device and three STM32 microcontrollers as
IoT devices. A case study with a well-known activity recognition dataset
has provided an illustrative motivating example, while experimental
tests on communication latencies, training and prediction turnaround
time, and accuracy improvement across the federated architecture
suggest the feasibility and usefulness of the proposed approach.

Future work will involve several aspects. A formal analysis of the
cost model of the proposed architecture for cloud-to-thing infrastruc-
tures will be useful to characterize the proposal, highlight its limi-
tations and improve it. Experimental tests at a larger scale, which
more data and a higher number of devices, will be carried out to
analyze stress conditions for edge devices in the proposed architec-
ture and to assess cloud scalability. Furthermore, porting the pro-
totype to other cloud–edge stacks and IoT device families will cor-
roborate the provided considerations about real-world feasibility of
the approach. The framework itself is susceptible to improvements,
by introducing more dynamic and context-aware resource allocation
policies. Finally, the adopted Mafalda ML algorithm itself is ongoing
investigations to increase its effectiveness for federated learning, by
including support for data streams, fine-grained incremental learning
and further hyperparameter optimizations concerning thresholds on the
training matrix and entropy-based conditions on the model generation.
These improvements shall increase model accuracy and generalization
capabilities.
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